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Abstract

All types of part-of-speech (POS) tagging errors have been equally treated by existing taggers. However, the errors are
not equally important, since some errors affect the performance of subsequent natural language processing seriously while
others do not. This paper aims to minimize these serious errors while retaining the overall performance of POS tagging.
Two gradient loss functions are proposed to reflect the different types of errors. They are designed to assign a larger cost
for serious errors and a smaller cost for minor errors. Through a series of experiments, it is shown that the classifier
trained with the proposed loss functions not only reduces serious errors but also achieves slightly higher accuracy than
ordinary classifiers.
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1. Introduction

Part-of-speech (POS) tagging is needed as a prepro-
cessing for various natural language processing (NLP)
tasks such as parsing, named entity recognition (NER), and
text chunking. Since POS tagging is normally performed
in the early step of an NLP task, the errors in POS tagging
are critical in that they affect all subsequent steps and often
lower the overall performance of NLP tasks.

Previous studies on POS tagging have shown success-
ful performances with machine learning techniques such
as hidden markov model (HMM) [1], conditional random
fields (CRF) [2], and maximum entropy model [3]. Super-
vised machine learning techniques were commonly used
in early studies on POS tagging. These studies focused
on how to apply the characteristics of a language to a ma-
chine learning technique [3, 4] or how to extract more in-
formative features for POS tagging [5]. The state-of-the-
art supervised POS tagging achieves over 97% of accu-
racy [6, 7]. This performance is generally regarded as the
maximum performance that can be achieved by machine

Manuscript received Jul. 26, 2011; revised Oct. 23, 2011;
accepted Mar. 07, 2012.
* Corresponding Author: Seong-Bae Park (seongbae@knu.ac.kr)
This work was supported by the Converging Research Center Pro-

gram funded by the Ministry of Education, Science and Technology
(2011K000659).
c©The Korean Institute of Intelligent Systems, All rights reserved.

learning techniques, and recent studies on POS tagging aim
to design unsupervised machine learning methods [8, 9].
However, there still exists a room to improve with super-
vised POS tagging in terms of error differentiation.

It should be noted that all errors are not equally impor-
tant in POS tagging. Let us consider parse trees in Fig-
ure 1 as an example. In Figure 1(a), the word “plans” is
mistagged as a noun where it should be a verb. This error
results in a wrong parse tree that is severely different from
the correct tree shown in Figure 1(b). The verb phrase of
the verb “plans” in 1(b) is discarded in Figure 1(a) and the
whole sentence is analyzed as a single noun phrase. Figure
1(c) and (d) show another tagging error and its effect. In
Figure 1(c), a noun is tagged as a NNS (plural noun) where
its correct tag is NN (singular or mass noun). However, the
error in Figure 1(c) affects only locally in the noun phrase
to which “physics” belongs. As a result, the general struc-
ture of the parse tree in Figure 1(c) is nearly same with the
correct one in Figure 1(d). That is, a sentence analyzed
with this type of error would yield a correct or near-correct
result in many NLP tasks such as machine translation and
text chunking.

The goal of this paper is to differentiate the serious POS
tagging errors from the minor errors. POS tagging is gen-
erally regarded as a classification task, and zero-one loss is
commonly used in learning classifiers [10]. Since zero-one
loss considers all errors equally, it can not distinguish er-
ror types. Therefore, a new loss is required to incorporate
different error types into the learning machines.

This paper proposes two gradient loss functions to re-
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(a) A parse tree with a serious error.
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(d) The correct parse tree of the sentence “We altered . . .”.

Figure 1. An example of POS tagging errors

flect differences among POS tagging errors. The functions
assign relatively small cost to minor errors, while larger
cost is given to serious errors. They are applied to learning
multiclass support vector machines [11], one of the best
classifiers in POS tagging [12]. Then, this multiclass SVM
is trained to minimize the serious errors. Overall accuracy
of this SVM is not much improved against ordinary SVMs,
but the serious errors are drastically reduced with the pro-
posed method.

The rest of the paper is organized as follows. Section
2 reviews the related studies on POS tagging. In Section
3, serious and minor errors are defined, and it is shown
that both errors are observable in a general corpus. Section
4 proposes two new loss functions for discriminating the
error types in POS tagging. Experimental results are pre-
sented in Section 5. Finally, Section 6 draws conclusions.

2. Related Work

POS tagging problem has been generally solved by ma-
chine learning methods for sequential labeling. In early
studies, rich linguistic features and supervised machine
learning techniques are applied by using annotated cor-

pora like Wall Street Journal corpus [13]. Ratnaparkhi [3]
used a maximum entropy model for POS tagging. In this
study, the features for rarely appearing words in a corpus
are expanded to improve the overall performance. Fol-
lowing this direction, various studies have been proposed
to extend informative features for POS tagging [6, 5]. In
addition, various supervised methods such as HMMs and
CRFs are widely applied to POS tagging. Lafferty et al.
[2] adopted CRFs to predict POS tags. The methods based
on CRFs have all the advantages of the maximum entropy
models and also resolve the well-known problem of label
bias. Kudo et al. [4] modified CRFs for non-segmented
languages like Japanese which have a problem of word
boundary ambiguity.

As a result of these efforts, the-state-of-the-art super-
vised POS tagging achieved over 97% of accuracy [6, 7].
Due to high accuracy of supervised approaches for POS
tagging, it has been considered that there is no room to im-
prove the performance on POS tagging in supervised man-
ner. Thus, recent studies on POS tagging focus on unsu-
pervised approaches [14, 15, 16]. Most previous studies
on POS tagging focus on how to extract more linguistic
features or how to adopt supervised or unsupervised ap-
proaches based on a single evaluation measure, accuracy.
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Table 1. Tag categories and POS tags in Penn Tree Bank tag set
Tag category POS tags
Substantive NN, NNS, NNP, NNPS, CD, PRP, PRP$
Predicate VB, VBD, VBG, VBN, VBP, VBZ, MD, JJ, JJR, JJS
Adverbial RB, RBR, RBS, RP, UH, EX, WP, WP$, WRB, CC, IN, TO

Determiner DT, PDT, WDT
Etc FW, SYM, POS, LS

However, with a different viewpoint for errors on POS tag-
ging, there still exists a room to improve the performance
of POS tagging for subsequent NLP tasks, even though the
overall accuracy can not be much improved.

In ordinary studies on POS tagging, costs of errors are
equally assigned. However, with respect to the perfor-
mance of NLP tasks relying on the result of POS tagging,
errors should be differently treated. In machine learning
community, cost sensitive learning has been studied to dif-
ferentiate costs among errors. By adopting different mis-
classification costs for each type of errors, a classifier is
optimized to achieve the lowest expected cost [17, 18, 19].

This paper aims to reduce the serious errors which
severely affect subsequent NLP tasks. For this purpose,
two types of loss functions are proposed to optimize the
performance of a machine learning method by consider-
ing differences of errors. As a result, even with the simi-
lar overall accuracy, the method trained with the proposed
loss functions reduces serious POS tagging errors drasti-
cally than ordinary POS taggers.

3. Error Analysis of Existing POS Tagger

The effects of POS tagging errors to subsequent NLP
tasks are different according to their type. Some errors are
serious, while others are not. In this paper, the serious-
ness of tagging errors is defined by categorical structures
of POS tags. Table 1 shows Penn tree bank POS tags and
their categories. There are five categories in this table: sub-
stantive, predicate, adverbial, determiner, and etc. In this
paper, serious tagging errors are defined as misclassifica-
tions among the categories, while minor errors are defined
as misclassifications within a category. This definition fol-
lows the fact that POS tags in a same category form similar
syntax structures in a sentence [20]. That is, inter-category
errors are treated as serious errors, while intra-category er-
rors are treated as minor errors.

Table 2 shows the distribution of inter-category and
intra-category errors observed in the section 20 of WSJ
corpus [13] that is tagged by SVMTools [12] (trained
with WSJ sections 15–18). In this table, bold numbers
denote inter-category errors, while other numbers show
intra-category errors. The number of total errors is 1,061
from 47,585 words (2.3%). Among them, only 431 errors

(40.6%) are intra-category (about 1.0%), while 630 errors
(59.4%) are inter-category (about 1.3%). If we can reduce
these inter-category errors under the cost of minimally in-
creasing intra-category errors, the tagging results would be
better in quality.

In general POS tagging, all tagging errors are regarded
equally in importance. However, inter-category and intra-
category errors should be distinguished. Since a machine
learning method is optimized by a loss function, inter-
category errors can be efficiently reduced if a loss func-
tion is designed to handle both types of errors with differ-
ent cost. This paper proposes two loss functions for POS
tagging and they are applied to multiclass Support Vector
Machines.

4. Learning SVMs with Class Similarity

POS tagging has been solved as a sequential labeling
problem which assumes dependency among words. How-
ever, by adopting sequential features such as POS tags of
previous words, the dependency can be partially resolved.
If it is assumed that words are independent one another,
POS tagging can be regarded as a multiclass classification
problem. One of the best solutions for this problem is SVM
[21].

4.1 Learning SVMs with Loss Function

Assume that a training data setD = {(x1, y1), (x2, y2),
. . . , (xl, yl)} is given where xi ∈ Rd is an instance vector
and yi ∈ {+1,−1} is its class label. SVM finds an optimal
hyperplane satisfying

xi · w + b ≥ +1 for yi = +1, (1)
xi · w + b ≤ −1 for yi = −1, (2)

where w and b are parameters to be estimated from training
data D. To estimate the parameters, SVMs minimizes a
hinge loss defined as

Lh(yi, ŷi) = max{0, 1− yi · ŷi}, (3)

where ŷi = w ·xi+ b is a estimated value for xi by SVMs.
With regularizer ||w||2 to control model complexity, the op-
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Table 2. The distribution of tagging errors on WSJ corpus by SVMTools.
Predicted category

Substantive Predicate Adverbial Determiner Etc
Substantive 171 225 9 1 0
Predicate 316 234 30 0 0

True category Adverbial 15 20 23 6 0
Determiner 2 0 6 2 0

Etc 1 0 0 0 1

timization problem of SVMs is defined as

min
w,Lh

1

2
||w||2 + C

l∑
i=1

Lh(yi, ŷi), (4)

subject to

yi(xi · w + b) ≥ 1− Lh(yi, w · xi + b),

and Lh(yi, ŷi) ≥ 0 ∀i, (5)

where C is a user parameter to penalize errors.
Crammer et al. [22] expanded the binary-class SVM

for multiclass classifications. In multiclass SVMs, by con-
sidering all classes, the optimization of SVM is generalized
as

min
w,Lh

1

2

∑
k∈K

||wk||2 + C
∑
k∈K

l∑
i=1

Lh(yi, k), (6)

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1− Lh(yi, k), (7)
Lh(yi, k) ≥ 0 ∀i, ∀k ∈ K \ yi, (8)

where φ(xi, yi) is a combined feature representation of xi
and yi, and K is the set of classes.

Since both binary and multiclass SVMs adopt a hinge
loss, the errors between classes have the same cost. To as-
sign different cost to different errors, Tsochantaridis et al.
[11] proposed an efficient way to adopt arbitrary loss func-
tion, L(yi, yj) which returns zero if yi = yj , otherwise
L(yi, yj) > 0. Then, the hinge loss Lh(yi, yj) is re-scaled
with the inverse of additional loss between two classes. By
scaling slack variables with the inverse loss, margin vio-
lation with high loss L(yi, yj) is more severely restricted
than that with low loss. Then, the optimization problem
with L(yi, yj) is given as

min
w,Lh

1

2

∑
k∈K

||wk||2 + C
∑
k∈K

l∑
i=1

Lh(yi, k), (9)

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1− Lh(yi, k)

L(yi, k)
, (10)

Lh(yi, yk) ≥ 0 ∀i, ∀k ∈ K \ yi, (11)

With the Lagrange multiplier α, the optimization prob-
lem in Equation (9) is easily converted to the following dual
quadratic problem.

min
α

1

2

l∑
i,j

∑
ki∈K\yi

∑
kj∈K\yj

αi,kiαj,kj × (12)

J(xi, yi, ki)J(xj , yj , kj)−
l∑
i

∑
ki∈K\yi

αi,ki , (13)

with constraints

α ≥ 0 and
∑

ki∈K\yi

αi,ki
L(yi, ki)

≤ C, ∀i = 1, · · · , l, (14)

where J(xi, yi, ki) is defined as

J(xi, yi, ki) = φ(xi, yi)− φ(xi, ki). (15)

4.2 Loss Function for POS tagging
To design a loss function for POS tagging, this paper

adopts categorical structures of POS tags. The simplest
way to reflect the structure of POS tags shown in Table 1 is
to assign larger cost to inter-category errors than to intra-
category errors. Thus, the loss function with the categorical
structure in Table 1 is defined as

Lc(yi, yj) =


0 if yi = yj ,
δ if yi 6= yj but they belong

to the same POS category,
1 otherwise,

(16)

where 0 < δ < 1 is a constant to reduce the value of
Lc(yi, yj) when yi and yj are similar. As shown in this
equation, inter-category errors have larger cost than intra-
category errors. This loss Lc(yi, yj) is named as category
loss.

The loss function Lc(yi, yj) is designed to reflect the
categories in Table 1. However, the structure of POS tags
can be represented as a more complex structure. Let us
consider the category, predicate. This category has ten
POS tags, and can be further categorized into two sub-
categories: verb and adject. Figure 2 represents a cate-
gorical structure of POS tags as a tree with five categories
of POS tags and their seven sub-categories.
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Figure 2. A tree structure of POS tags.
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Figure 3. Effect of the proposed loss function in multiclass SVMs.

To represent the tree structure of Figure 2 as a loss, an-
other loss function Lt(yi, yj)is defined as

Lt(yi, yj) = (17)
1

2
[Dist(Pi,j , yi) +Dist(Pi,j , yj)]× γ, (18)

where Pi,j denotes the nearest common parent of both yi
and yj , and the function Dist(Pi,j , yi) returns the number
of steps from Pi,j to yi. The user parameter γ is a scaling
factor of a unit loss for a single step. This loss Lt(yi, yj)
returns large value if the distance between yi and yj is far
in the tree structure, and it is named as tree loss.

As shown in Equation (9), two proposed loss functions
adjust margin violation between classes. They basically as-
sign less value for intra-category errors than inter-category
errors. Thus, a classifier is optimized to strictly keep inter-
category errors in smaller boundary. Figure 3 shows a sim-
ple example. In this figure, there are three POS tags and
two categories. NN (singular or mass noun) and NNS (plu-
ral noun) belong to the same category, while VB (verb, base
form) is in another category. Figure 3(a) shows the decision

boundary of NN based on hinge loss. As shown in this fig-
ure, a single ξ is applied for the margin violation among
all classes. Figure 3(b) also presents the decision boundary
of NN, but it is determined with one of the proposed loss
functions. In this figure, the margin violation is differently
applied for inter-category (NN to VB) and intra-category
(NN to NNS) errors. It results in reducing errors between
NN and VB even if the errors between NN and NNS could
be slightly increased.

5. Experiments

5.1 Experimental Setting

Experiments are performed with a well-known data,
Wall Street Journal (WSJ) corpus. Among WSJ corpus, the
documents from sections 15–18 are used as training data,
and those from section 20 are as test data. Table 3 shows
a simple statistics of the corpus. As shown in this table,
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Table 3. Simple statistics of experimental data
Training Test

Section 15–18 20
# of sentences 8,936 2,011

# of terms 211,727 47,585

training data contains 8,936 sentences with 211,727 words.
In test data, there are 2,011 sentences and 47,585 words.

Table 4 shows the feature set for our experiments. In
this table, wi and ti denote the lexicons and POS tag for the
i-th word in a sentence respectively. The POS tags for fol-
lowing words are obtained from a two-pass approach pro-
posed by Nakagawa et al. [23]. The combinations of POS
tags from previous words (ti−2 · ti−1) and those from next
words (ti+1·ti+2) are adopted to reflect interaction between
POS tags of surrounding words.

The dimension of the feature space is over 112,000. In
the experiments, two multiclass SVMs with proposed loss
functions are used. One is CL-MSVM with category loss
and the other is TL-MSVM with tree loss. They are com-
pared with two base-line SVMs: one-vs-all SVM (SVM)
and multiclass SVM (MSVM). A linear kernel is used for
all SVMs.

5.2 Experimental Result

Figure 4 shows error rates of CL-MSVM, MSVM, and
SVM. In this figure, both types of errors are plotted accord-
ing to the values of parameter δ. Figure 4(a) plots inter-
category error rates while Figure 4(b) shows intra-category
error rates. When δ = 1.0, CL-MSVM is completely same
with MSVM of which error rate is 2.667%. However, inter-
category error rate of CL-MSVM is just 2.372% when δ is
0.6. δ = 0.6 implies that the cost of intra-category errors is
set to 60% of that of inter-category errors.

One thing to note is that the inter-category error rate
is larger than 2.372% when 0 ≤ δ < 0.6. This phe-
nomena can be explained with Figure 4(b). With 0.6 ≤
δ ≤ 1.0, intra-category error rate of CL-MSVM is simi-
lar to MSVM. However, when δ is less than 0.6, the intra-
category error rate is reciprocal to δ. These intra-category
errors affect inter-category errors, since mislabeled POS
tags of surrounding words affect estimation of POS tag for
a current word seriously. As a result, the inter-category er-
ror rate rather increases in 0 ≤ δ ≤ 0.6. However, even
in this situation, CL-MSVM achieves lower inter-category
error rate than both SVM and MSVM.

Similar results are observed for TL-MSVM. Figure 5
plots the error rates of TL-MSVM, SVM, and MSVM. In
Figure 5(a), TL-MSVM shows the lowest inter-category er-
ror rate at γ = 0.4. However, when γ is less than 0.4, the
inter-category error rate of TL-MSVM rather increases due
to high intra-category error rate in interval 0 ≤ δ ≤ 0.4 (see

Figure 5(b)). The reason for this increment of error rate in
TL-MSVM is same with that in CL-MSVM. One differ-
ence from CL-MSVM is that intra-category errors remain
stable with γ > 0.4, while inter-category errors increase
up to 2.887%. This is because TL-MSVM assigns differ-
ent costs even to intra-category errors and these different
costs cause more inter-category errors as γ increases.

Overall error rates of four experimental methods are
given in Figure 6. Figure 6(a) depicts overall error rate of
CL-MSVM comparing with SVM and MSVM, while Fig-
ure 6(b) shows error rate of TL-MSVM. Both CL-MSVM
and TL-MSVM aim to minimize inter-category errors with-
out sacrificing many intra-category errors. As a result, their
overall error rate is lower than both SVM and MSVM. CL-
MSVM shows lower error rate than them in 0.4 ≤ δ ≤ 0.9,
and TL-MSVM outperforms them when γ ≥ 0.1.

Table 5 compares four experimental methods at their
best accuracies. TL-MSVM shows the best overall perfor-
mance where its error rate is as low as 4.565%. Since one-
vs-all approach is easily affected from skewed data, SVM
shows the worst performance. The error rate of MSVM is
just 5.072%, but about 53% of the errors are inter-category.
On the other hand, CL-MSVM and TL-MSVM outperform
both MSVM and SVM. The error rate of CL-MSVM is
4.795% which is slight improvement over MSVM. How-
ever, only about 49% of CL-MSVM are inter-category.

For inter-category error, CL-MSVM achieved the best
performance. Its inter-category error rate is 2.372 %. Both
TL-MSVM and CL-MSVM have significantly improved
the results of SVM and MSVM in inter-category error. CL-
MSVM achieves 20% of improvement over SVM and 12%
over MSVM in terms of inter-category error. The improve-
ment of TL-MSVM in inter-category error is less than CL-
MSVM (18% over SVM and 11% over MSVM), but the
improvement is still significant. The 10% improvement (-
0.3 error rate) in inter-category errors means reduction of
more than 120 serious errors. Both CL-MSVM and TL-
MSVM reduce about 250 serious errors compared to base-
line SVMs.

Since SVMTools, which is an ordinary POS tagger
based on SVMs, uses various external knowledge repos-
itories and heuristic processings to extract more informa-
tion on sentences, we did not directly compare with SVM-
Tools in this paper. However, without additional knowl-
edge repositories and processings, SVMTools is exactly
same with SVM in the experiment. Thus, from these re-
sults, we can conclude that SVMs trained with the pro-
posed loss functions outperform ordinary SVMs and they
successfully discriminate the serious POS tagging errors
from the minor errors. Especially by adopting TL-MSVM
both intra- and inter-category errors can be reduced effi-
ciently. In case of CL-MSVM, even though it achieves the
best performance in terms of inter-category error, it only re-
duces 0.02 inter-category errors compared with TL-MSVM
at the cost of 0.26 intra-category errors. Thus, for various
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Table 4. Feature set for experiments
Feature Name Description Dimension

Lexical Feature wi−2,wi−1,wi,wi+1,wi+2 107,940
Tag Feature ti−2,ti−1,ti+1,ti+2 144

Combination Feature ti−2 · ti−1, ti+1 · ti+2 2,592

(g) Inter-category errors (h) Intra-category errors

Figure 4. Two types of errors in CL-MSVM and baseline SVMs.

downstream applications, TL-MSVM could be more effi-
cient than not only SVM and MSVM but also CL-MSVM.

6. Conclusion

In this paper, we have shown that supervised POS
tagging can be improved by discriminating inter-category
errors from intra-category ones. An inter-category er-
ror occurs by mislabeling a word with a totally different
tag, while an intra-category error is caused by a similar
POS tag. Therefore, inter-category errors affect the per-
formances of subsequent NLP tasks far more than intra-
category errors. This implies that different costs should be
considered in learning POS tagger according to error types.

As a solution to this problem, we have proposed two
gradient loss functions which reflect different costs for two
error types. The cost of an error type is set according to
(i) categorical difference or (ii) distance in the tree struc-
ture of POS tags. Our experiments have shown that if these
loss functions are applied to multiclass SVMs, they could
significantly reduce inter-category errors. In addition, it is
also shown that the multiclass SVMs trained with the pro-
posed loss functions outperform the ordinary SVMs even
in overall performance.

In this paper, we have shown that cost sensitive learning
can be applied to POS tagging only with multiclass SVMs.
However, the proposed loss functions are general enough
to be applied to other existing POS taggers. Most super-

vised machine learning techniques are optimized on their
loss functions. Therefore, the performance of POS taggers
based on supervised machine learning techniques can be
improved by applying the proposed loss functions to learn
their classifiers.
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