DOI QR코드

DOI QR Code

CVS-75모드에서 차량의 주행거리, 주행패턴 및 엔진 예열상태에 따른 배출가스 특성

Emission Characteristics of Vehicles in CVS-75 Mode Under Various Conditions of Driving Distance, Driving Pattern, and Engine Pre-Heating

  • 엄명도 (국립환경과학원 교통환경연구소) ;
  • 백두성 (대진대학교 컴퓨터응용기계설계공학과)
  • Eom, Myung-Do (Transportation Emission Research Center, National Institute of Environmental Research) ;
  • Baik, Doo-Sung (Dept. of Computered-aided Mechanical Engineering, Daejin Univ.)
  • 투고 : 2011.11.07
  • 심사 : 2012.03.19
  • 발행 : 2012.05.01

초록

최근에 들어서 이산화탄소가 지구온난화의 원인으로 알려져 있기 때문에 온실가스 문제는 이슈화 되어 왔다. 본 연구는 한국에서 운행 중인 차량에서 이산화탄소 배출가스 영향인자 특성을 파악하고자 했다. 가솔린 자동차 129대, 디젤자동차 100대, LPG 자동차 34대 차량을 차대 동력계에서 시험했다. 시험과정에서 이산화탄소, 일산화탄소 그리고 연료저감율을 측정했다. 실험모드는 현재 한국에서 경차의 배출가스를 규제하기 위해서 배출계수를 산정하기 위해 개발된 CVS-75 모드에서 이루어졌다. 실험 결과 배기량, 연료소비율, 연료 종류, 주행패턴, 마일수 그리고 이산화탄소 사이의 관련성이 조사되었다.

Recently green house gas emission problem has been issued because $CO_2$ emission is known to cause global warming. Hence, introduces more stringent emission and fuel economy requirements in various countries, including Korea. In this research, $CO_2$ emission factor characteristics of in-use cars, which are the most dominant vehicle type in Korea, were studied, and 129 gasoline vehicles, 100 diesel vehicles, and 34 LPG vehicles were tested on a chassis dynamometer. In the tests, CO and $CO_2$ emissions as well as fuel reduction rates weremeasured. The tests were conducted in the CVS-75 mode, which has been considered for developing emission factors for regulating emissions from light-duty vehicles in Korea. Through experiments, correlations among displacement, fuel consumption efficiency, fuel type, mileage, driving pattern, and $CO_2$ emission were investigated.

키워드

참고문헌

  1. Ryu, J and Lyu, Y., 2006, "Comparison of Correlation between CVS-75 Mode and Korea Mode to Estimate Emission Factors for Vehicles," Journal of Korean Society for Atmospheric Environment, Vol. 22, No. 3, pp. 383-391.
  2. Metz, N., 1974, "Contribution of Passenger Cars and Trucks to $CO_2$, $CH_4$, $N_20$ and HFC Emissions," SAE 2001-01-3758.
  3. Wu, Y., Wang, M, Sharer and P, Bousseau, A., 2006, "Well-to Wheels Results fo Energy use, Greenhouse Gas Emissions, and Criteria Air Pollutant Emissions of Selected Vehicles /Fuel Systems," SAE 2006-01-0377.
  4. Sugiyama, M, Kajiware, M., Iwama, M. and Mori, M, 2003, "Performance and Emission of DI Diesel Engine Operated with LPG and Cetane Enhanced Additives, SAE 2003-01-1920.
  5. Sullivan, J., Baker, R. and Boyer, B., 2004, "$CO_2$ Emission Benefit of Diesel (versus Gasoline) powered Vehicles,"Journal of Environment Science &Technology, Vol. 38, No. 12, pp. 3217-3223. https://doi.org/10.1021/es034928d
  6. Kajiwara, M., Sugiyama, K., Sagara, M. and Goto, S., 2002, "Performance and Emissions Characteristics of an LPG Direct Injection Diesel Engine," SAE 2002-01-0869.
  7. Cunningham, J., 2010, "Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation," SAE 2010-01-2306.
  8. Kim, Y., Lee, H., Kang, J., Chung, J. and Chung, Y., 2009, "Effect of Fuels on $CO_2$ Emission in CVS-75 Mode," Trans. of the KSME (B), Vol. 17, No. 4, pp. 72-78.
  9. Lyu, Y., Ryu, J., Jung, S., Jeon, M., Kim, D., Eom, M. and Kim, J., 2007, "A Study on the characteristics of Carbon Dioxide Emissions from Gasoline Passenger Cars," Trans. of the KSAE, Vol. 15, No. 2, pp. 58-64.