DOI QR코드

DOI QR Code

Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation

화력발전 보일러 과열기 및 재열기 운전 중 튜브 온도예측기법

  • Received : 2011.05.18
  • Accepted : 2012.02.25
  • Published : 2012.05.01

Abstract

The superheater and reheater tubes of a heavy-load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial-operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short-term prediction of tube temperature; the method involves the use of boiler operation information and flow-network-analysis-based tube heat flux. This method can help in high-temperaturedamage monitoring when it is integrated with a practical tube-damage-assessment method such as the Larson-Miller Parameter.

대용량 화력발전 보일러 과열기와 재열기 튜브는 과열에 취약하여 보일러 정지 시 튜브 내부의 산화 스케일 두께를 측정하여 과열상태를 평가한다. 산화스케일 두께측정에 의한 튜브 온도예측은 튜브의 발췌가 불가피하고 정확한 과열지점의 선정과 튜브의 초기운전온도가 확보되지 못하면 유의한 튜브온도예측결과를 얻을 수 없는 문제점이 있다. 또한 해석적 방법에 의해 튜브 온도를 예측하는 경우 튜브 외부 연소가스에 대한 연소, 복사, 대류 및 난류유동에 대한 방대한 해석이 필요한 반면 순시적인 부하의 변동, 탄종의 변화 및 운전방법의 변화를 반영할 수 없으므로 지속적인 튜브의 온도를 예측할 수 없는 단점이 있다. 본 논문에서는 보일러 운전정보와 유로망 해석을 통해 튜브의 열유속을 계산하고 이를 이용하여 단시간에 튜브의 온도를 예측할 수 있는 기법을 제시하였다. 본 기법을 Larson-Miller Parameter 법과 같은 실용적인 튜브 손상평가기법과 결합하면 유용한 고온손상감시의 수단으로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Dooley, R. B. and McNaughton, W. P., 2007, "Boiler and Heat Recovery Steam Generator Tube Failures:Theory and Practice," Vol. 3, pp. 44-1-44-35.
  2. Hong, S., 1991, "The Creep Life Prediction Method by Cavity Area," Trans. of the KSME (A), Vol. 15, No. 5, pp. 1455-1461.
  3. Hong, S., 1995, "Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding," Trans. of the KSME (A), Vol. 19, No. 5, pp. 1182-1189.
  4. Hong, S. and Kim, J., 2000, "Numerical Analysis of Corrosion Effects on the Life on Boiler Tube," Trans. of the KSME(A), Vol. 24, No. 11, pp. 2812-2822.
  5. Xu, L., Khan, J. A. and Chen, Z., 2000, "Thermal Load Deviation Model for Superheater and Reheater of a Utility Boiler," Applied Thermal Engineering 20, pp. 545-558. https://doi.org/10.1016/S1359-4311(99)00049-6
  6. Viswanthan, R., 1993, "Life Assessment of Boiler Pressure Parts" EPRI, Vol. 7, Ch4.
  7. Xu, M., Yuan, J., Ding, S. and Cao, H., 1998, "Simulation of the Gas Temperature Deviation in Large-Scale Tangential Coal Fired Utility Boilers," Computer Methods in Applied Mechanics and Engineering, pp. 369-380.
  8. Seo, S., Park, H. and Lee, S., 2009, "Computational Studies on the Combustion and Thermal Performance of the Coal Fired Utility Boiler : Temperature and Thermal Energy Distribution," Journal of SAREK, Vol. 21, No. 3, pp. 157-166.
  9. Tilley, R., 2006 "TULIP 2.0: A Computer Code for Probabilistic Analysis of Superheater/Reheater Tubing," EPRI, pp. 71-82.
  10. Kim, B. and Yoo, S., 2010, "A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation," Journal of SAREK, Vol. 22, No. 8, pp. 573-578.
  11. KOEWP, 2004, Dangjin Thermal Power Plant Technical Specification, pp. 73-99.