DOI QR코드

DOI QR Code

Development of Structured Hybrid Illumination System and Optimum Illumination Condition Selection for Detection of Surface Defects on Silicon Wafer in Solar Cell

태양전지 실리콘 웨이퍼의 표면결함 검출을 위한 구조적 하이브리드 조명시스템의 개발 및 최적 조건 선정

  • An, Byung-In (Aeronautical & Mechanical Design Engineering, Korea Nat'l Univ. of Transportation) ;
  • Kim, Gyung-Bum (Aeronautical & Mechanical Design Engineering, Korea Nat'l Univ. of Transportation)
  • 안병인 (한국교통대학교 항공.기계설계학과) ;
  • 김경범 (한국교통대학교 항공.기계설계학과)
  • Received : 2011.07.06
  • Accepted : 2012.02.25
  • Published : 2012.05.01

Abstract

In this study, an inspection system based on an optical scanning mechanism is developed for the inspection of silicon wafers in solar cells. In particular, a structured hybrid illumination system that can satisfy the illumination requirement for the detection of various defects is designed. In the hybrid illumination system, the optimum illumination conditions are selected by considering the design of experiment in master glass and silicon wafer. The illumination conditions available are B-high, BG-high, BR-high, and BGR-high for master glass and R-middle-B-medium for silicon wafers. By using the illumination conditions for silicon wafers, numerous surface defects like pinhole, scratch, and chipping, can be accurately detected. The hybrid illumination system is expected to be widely used for the inspection of silicon wafers in solar cells.

본 논문에서 태양전지 실리콘 웨이퍼 검사를 위해 광학스캐닝 메커니즘 기반 검사장비를 개발하였다. 그 중에서 다양한 결함검사 요구와 적절한 조명조건을 만족하는 구조적 하이브리드 조명시스템을 설계하였다. 그 다음으로 실험계획법을 이용하여 구조적 하이브리드 조명시스템의 최적 조명조건을 마스터 유리와 실리콘 웨이퍼에서 선정하였다. 마스터 유리에서 최적 조명조건은 B-강, BG-강, BR-강, BGR-강 이며, 실리콘 웨이퍼에서 최적조건은 R-중-B-중 이다. 이 최적조명조건을 적용하여 실리콘 웨이퍼 표면을 검사한 결과, 핀홀, 스크래치, 치핑 등 다수의 표면결함을 정확하게 검출하였다. 구조적 하이브리드 조명시스템은 태양전지 실리콘 웨이퍼 표면결함 검사에 유용하게 사용될 수 있다.

Keywords

References

  1. Byelyayev, A., 2005, "Stress Diagnostics and Crack Detection in Full-Size Silicon Wafers using Resonance Ultrasonic Vibrations," Department of Electrical Engineering, Ph. D. University of South Florida.
  2. Li, W. C. and Tsai, D. M., 2011, "Automatic Saw-mark Detection in Multicrystalline Solar Wafer Images," Solar Energy Materials & Solar cells, DOI: 10.1016/j.solmat.2011.03.025.
  3. Sunil Kumar Kopparapu, 2006, "Lighting Design for Machine Vision Application," Image & Vision Computing, Vol. 24, pp. 720-726. https://doi.org/10.1016/j.imavis.2005.12.016
  4. Na, H. C., Rho, B. O., Ryu, Y. K. and Cho, H. S., 1997, "Design of a Lighting System for PCB Visual Pattern Inspection," Trans. of the KSME A, Vol. 21, pp. 1-11.
  5. Cho, H. S. "Optomechatronics," Taylor & Francis.
  6. An, B. I. and Kim, G. B., 2011, "A Study on Selection of Parameters in Structured Illumination Mechanism for Silicon Wafer in Solar Cell," Proceedings of the KSME 2011 Spring Annual Meeting, pp. 336-337.
  7. Kim, G. B., 2010, "A Structured Mechanism Development and Experimental Parameter Selection of Laser Scattering for the Surface Inspection of Flat-Panel Glasses," International Journal of Production Research, Vol. 48, pp. 3911-3923. https://doi.org/10.1080/00207540902922844
  8. Suzuki, R., Nakmae, K. and Fujioka, H., 2005, "Robustness Evaluation of Cost-Optimum Sampling Plan for In-Line Wafer Inspection by using Taguchi Methods," IEEE, pp. 386-389.

Cited by

  1. Social Impacts of Solar Home Systems in Rural Areas: A Case Study in Bangladesh vol.10, pp.10, 2017, https://doi.org/10.3390/en10101615