DOI QR코드

DOI QR Code

지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계

Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support

  • 투고 : 2011.06.21
  • 심사 : 2012.02.20
  • 발행 : 2012.05.01

초록

모바일하버는 해상에서 컨테이너 상하역 작업을 하는 새로운 해상물류 시스템이다. 모바일하버용크레인과 같이 해상에서 작업하는 대형 구조물은 파도에 의해 발생하는 지지부의 운동으로 관성력의 영향을 크게 받는다. 따라서 구조물의 안전성에 대한 정확한 검증이 요구되며, 생산 비용을 줄이기 위해 경량화가 매우 중요하다. 이런 요구조건을 위해 동적 응답 최적설계를 수행한다. 등가정하중법은 동하중을 등가정하중으로 변환한 후, 정적 응답 최적화기법을 사용하여 문제를 해결하는 동적 응답 최적설계 방법이다. 지지부의 움직임을 고려한 등가정하중법을 제안하고, 제안한 방법으로 모바일하버용 크레인을 최적화한다.

The mobile harbor is a new innovative system that delivers containers from a containership to a harbor without good infrastructure. A crane is installed on the deck of the mobile harbor and transfers the containers. The structure of the crane is influenced by the inertia force that occurs from a moving support. Thus an accurate safety verification considering the moving support is required. Lightweight of the crane structure is also significant in the design for low production cost and efficient operation. Dynamic response optimization can be exploited to achieve these two requirements. Equivalent static loads method is employed for dynamic response optimization of the crane. The equivalent static loads method transforms dynamic loads to equivalent static loads, and static response structural optimization with the transformed equivalent static loads are solved. The process proceeds in a cyclic manner. A new method is proposed to consider the moving supports and the structure of the mobile harbor is optimized using the proposed method.

키워드

참고문헌

  1. Lim, W. J., Jung, U. J., Jeong, S. B., Lee, J. J. and Park, G. J, 2010, "Structural Design of the Mobile Harbor Crane Using Structural Optimization," 2010 KSME Autumn Annual Meeting, pp. 1750-1755.
  2. Park, G. J., 2007, Analytic Methods for Design Practice, Springer-Verlag, Germany.
  3. Choi, W. S. and Park, G. J., 2002, "Structural Optimization Using Equivalent Static Loads at All the Time Intervals," Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 19, pp. 2077-2094.
  4. Kang, B. S., Park, G. J. and Arora, J. S., 2005, "Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load," Journal of American Institute Aeronautics and Astronautics, Vol. 43, No. 4, pp. 846-852. https://doi.org/10.2514/1.4294
  5. Hyperworks User's Guide Version 10.0, 2009, Altair Engineering Inc., USA.
  6. Korean Register of Shipping, 2010, "Rules for the Classification of Mobile Offshore Structures," Technical Rules 2010, Korea.
  7. Ministry of Labor, 2009, "The Crane Manufacture and Safety Examination Standard," Occupational Safety and Health Act, Korea.
  8. Shapiro, Howard I., Shapiro, Jay P., Shapiro, Lawrence K., 1999, Cranes and Derricks, McGraw-Hill, New York, pp. 144-156.
  9. Korea Ocean Research & Development Institute, 2004, Development of Design Technology of Very Large Floating Structures, Ministry Of Maritime Affairs & Fisheries, Korea.
  10. MD NASTRAN 2010.1 User's Manual, MSC.Software, USA.
  11. MD NASTRAN 2010.1 DMAP User's Manual, MSC.Software, USA.
  12. GENESIS User's Manual, Version 10.0, 2008, Vanderplaats Research and Development Inc., Colorado, USA.

피인용 문헌

  1. Single loop single vector approach using the conjugate gradient in reliability based design optimization vol.55, pp.4, 2017, https://doi.org/10.1007/s00158-016-1580-5