DOI QR코드

DOI QR Code

그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application

  • 투고 : 2011.06.05
  • 심사 : 2011.10.24
  • 발행 : 2012.01.30

초록

이 연구에서는 타설 과정에서 낮은 점성이 요구되는 구조물에 적합한 낮은 점성을 가지면서 다중균열에 의한 변형률 경화거동을 보이는 고인성 섬유복합재료를 제조하기 위한 재료와 제조 방법을 제시하고자 한다. 섬유복합재료의 낮은 점성과 고인성을 얻기 위하여 미시역학과 파괴역학에 기반한 이론적 해석 방법과 제조 기법을 적용하였다. 2~3MPa 범위의 인장강도를 갖는 복합재료에 적합한 최적의 섬유 양과 길이, 그리고 섬유와 매트릭스의 계면 특성을 미시역학과 안정상태 균열 이론을 이용하여 해석적으로 구한 후 여섯 가지 배합을 결정하였다. 여섯 가지 배합으로 제조한 실험체는 실험을 통하여 점성과 일축인장 성능을 검증하였다. 실험 결과 굳기 전에는 그라우팅에 적합한 낮은 점성을 갖으면서 굳은 후에는 1.5% 이상의 고인성을 갖는 변형률 경화 섬유복합재료를 제조할 수 있는 것으로 나타났다.

This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

키워드

참고문헌

  1. 강철호, 이방연, 박승범, 김윤용, "보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC 내의 섬유 가교 모델", 한국전산구조공학회 논문집, 제22권 6호, 2009, pp.587-596.
  2. Bentur, A. "Fiber-reinforced Cementitious Materials", Materials Science of Concrete, The American Ceramic Society, 1989, pp.225-285.
  3. de Larrard, F., "Concrete Mixtrue Proportioning: a Scientific Approach", E & FN Spon, New York, 1999.
  4. Kanda, T. and Li, V. C., "Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC", Journal of Advanced Concrete Technology, vol. 4, No. 1, 2006, pp.59-72. https://doi.org/10.3151/jact.4.59
  5. Leung, C. K. Y., "Design criteria for pseudoductile fiber-reinforced composites", Journal of Engineering Mechanics, vol. 122, No. 1, 1996, pp.10-14. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(10)
  6. Li, M., "Multi-Scale Design for Durable Repair of Concrete Structures", The University of Michigan, Ph. D. Thesis, 2009.
  7. Li, V. C., "On Engineered Cementitious Composites (ECC) - A Review of the Material and its Applications", Journal of Advanced Concrete Technology, vol. 1, No. 3, 2003, pp.215-230. https://doi.org/10.3151/jact.1.215
  8. Li, V. C. and Leung, K. Y., "Steady-state and multiple cracking of short random fiber composites", Journal of Engineering Mechanics, vol. 118, No. 11, 1992, pp.2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  9. Li, V. C. and Wu, H. C., "Conditions for Pseudo Strain Hardening in Fiber Reinforced Brittle Matrix Composites", Journal of Applied Mechanics Review, vol. 45, No. 8, 1992, pp.390-398. https://doi.org/10.1115/1.3119767
  10. Li, V. C., Wu, C., Wang, S., Ogawa, A and Saito, T., "Interface Tailoring for Strain-Hardening Polyvinyl Alcohol-Engineered Cementitious Composites (PVAECC)", ACI Materials Journal, vol. 99, No. 5, 2002, pp.463-472.
  11. Lin, Z., Kanda, T. and Li, V. C., "On interface property characterization and performance of fiber reinforced cementitious composites", Concrete Science and Engineering (RILEM), vol. 1, 1999, pp.173-184.
  12. Marshall, D.B. and Cox, B.N., "A J-integral method for calculating steady-state matrix cracking stressed in composites", Mechanics of Materials, vol. 7, No. 2, 1988, pp.127-133. https://doi.org/10.1016/0167-6636(88)90011-7
  13. Mobasher, B., Stang, H. and Shah, S. P., "Microcracking in Fiber Reinforced Concrete", Cement and Concrete Research, vol. 20, 1990, pp.665-676. https://doi.org/10.1016/0008-8846(90)90001-E
  14. Rosquoet, F., Alexis, A., Khelidj, A. and Phelipot, A., "Experimental study of cement grout: Rheological behavior and sedimentation", vol. 33, 2003, pp.713-722. https://doi.org/10.1016/S0008-8846(02)01036-0
  15. Sonebi, M., "Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash", Cement and Concrete Research, vol. 36, 2006, pp.1609-1618. https://doi.org/10.1016/j.cemconres.2006.05.016
  16. Yang, E. H. and Li, V. C., "Strain-hardening Fiber Cement Optimization and Component Tailoring by means of a Micromechanical Model", Journal of Construction and Building Materials, vol. 24, 2010, pp.130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014
  17. Yang, E. H., Sahmaran, M., Yang, Y. and Li, V. C., "Rheological Control in the Production of Engineered Cementitious Composites", ACI Materials Journal, vol. 106, No. 4, 2009, pp.357-366.
  18. Yang, E. H., Wang, S., Yang, Y., Li, V. C., "Fiber-bridging constitutive law of engineered cementitious composites", Journal of Advanced Concrete Technology, vol. 6, No. 1, 2008, pp.181-193. https://doi.org/10.3151/jact.6.181
  19. Yang, E. H., Yang, Y. and Li, V. C., "Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness", ACI Materials Journal, vol. 104, No. 6, 2007, pp.620-628.

피인용 문헌

  1. Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios vol.19, pp.2, 2015, https://doi.org/10.11112/jksmi.2015.19.2.117
  2. An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout vol.18, pp.6, 2014, https://doi.org/10.11112/jksmi.2014.18.6.021
  3. Engineering Property of Basalt Fiber as a Reinforcing Fiber vol.3, pp.1, 2015, https://doi.org/10.14190/JRCR.2015.3.1.084
  4. 폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법 vol.17, pp.3, 2013, https://doi.org/10.11112/jksmi.2013.17.3.118
  5. 일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동 vol.21, pp.6, 2012, https://doi.org/10.11112/jksmi.2017.21.6.178
  6. 골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능 vol.24, pp.5, 2020, https://doi.org/10.11112/jksmi.2020.24.5.95