DOI QR코드

DOI QR Code

Performance Improvement of Azimuth Estimation in Low Cost MEMS IMU based INS/GPS Integrated Navigation System

저가형 MEMS 관성측정장치 기반 INS/GPS 통합 항법 장치에서 방위각 추정 성능 향상

  • Chun, Se-Bum (Satellite Navigation Team, Korea Aerospace Research Institute) ;
  • Heo, Moon-Beom (Satellite Navigation Team, Korea Aerospace Research Institute)
  • 천세범 (한국항공우주연구원 위성항법팀) ;
  • 허문범 (한국항공우주연구원 위성항법팀)
  • Received : 2012.09.14
  • Accepted : 2012.10.30
  • Published : 2012.10.30

Abstract

Kalman filter is generally used in INS/GPS integrated navigation filter. However, the INS with low performance inertia sensor can not find accurate azimuth in initial alignment stage because sensor noise level is too large compare to Earth rotation rate, therefore the performance and stability of Kalman filter can not be guaranteed. In this paper, the extended Kalman filter and particle filter combined filter structure which can be overcome large initial azimuth error is proposed.

INS/GPS 통합 항법 필터는 주로 칼만 필터를 이용하여 구성되고 있다. 그러나 낮은 성능의 관성 센서를 이용한 INS/GPS 통합 항법 필터의 경우 센서 오차 레벨 등의 문제로 인해 정확한 방위각 정보의 제공이 곤란하며, 이로 인해 통합 필터를 구성하는 칼만 필터의 추정 성능이나 안정성을 보장할 수 없게 된다. 본 논문에서는 칼만 필터와 파티클 필터의 결합된 형태의 국지선형 파티클 필터를 이용하여 초기 방위각 오차를 극복할 수 있는 방법을 제시하였다.

Keywords

References

  1. Myeong-Jong Yu, "Nonlinear Robust Observer Design for Strapdown INS In-Flight Alignment," IEEE Transaction on Aerospace and Electronic System, vol. 40, no.3, pp. 797-807, July 2004 https://doi.org/10.1109/TAES.2004.1337455
  2. H. Carvalho, "Optimal Nonlinear Filtering on GPS/INS Integration," IEEE Transaction on Aerospace and Electronic System, vol. 33, no.3, pp. 835-850, July 1997 https://doi.org/10.1109/7.599254
  3. P. B. Quang, "An Insight into the Issue of Dimensionality in Particle Filtering," Proceeding of the 13th International Conference on Information Fusion, pp.1-8, July 2010
  4. Yong Rui, "Better Proposal Distribution: Object Tracking Using Unscented Particle Filter," Proceedings of Computer Vision and Pattern Recognition, vol. 2, pp. 786-793, Dec. 2001
  5. R. G. Brown, Introduction to Random Signals and Applied Kalman Filtering, 3rd Ed., Jhon Wiley & Sons, 1985
  6. D. H. Titterton, Strapdown Inertial Navigation Technology, 2nd Ed., The Institution of Electronic Engineers, 2004
  7. A. Doucet, Sequential Monte Carlo Methods in Practice, Springer, 2001
  8. B. Ristic, Beyond the Kalman Filter, Artech House, 2004
  9. Deok-jin Lee, Nonlinear Filtering with Applications to Estimation and Navigation, Ph.D Dissertation, May 2005
  10. C. Liu, "Alternating Subspace-Spanning Resampling to Accelerate Markov Chain Monte Carlo Simulation," Journal of the American Statistics Association, vol. 98, no. 461, pp. 110-117, March 2003 https://doi.org/10.1198/016214503388619148

Cited by

  1. DWT와 GPS/INS융합 알고리즘을 이용한 수면이동체의 위치 인식 vol.10, pp.1, 2012, https://doi.org/10.7746/jkros.2015.10.1.001