DOI QR코드

DOI QR Code

GPS AOA Choosing Algorithm in Environment of High-Power Interference Signals

고 전력 간섭 환경에서의 GPS AOA 선택 알고리즘

  • Hwang, Suk-Seung (Department of Mechatronics Engineering, College of Engineering, Chosun University)
  • 황석승 (조선대학교 메카트로닉스공학과)
  • Received : 2012.07.16
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

The Global Positioning System (GPS) is widely utilized for commercial and military applications to estimate the location of the user or object. The GPS suffers from various intentional or unintentional interferers and it requires estimating the accurate angle-of-arrival (AOA) of the GPS signal to suppress interference signals and to efficiently detect GPS data. Since the power of GPS signal is very low comparing with the noise and interference signals, it is extremely difficult to estimate GPS AOA before despreading. Although AOA of GPS signal is usually estimated after despreading, it requires choosing the GPS AOA among results of AOA estimation because they include AOAs of interference and GPS signals when existing high-power interferers. In this paper, we propose the efficient choosing algorithm of the GPS signal among the estimated AOAs. The proposed algorithm compares the estimated results before despreading and after despreading for choosing AOA of GPS signal. Computer simulation examples are presented to illustrate the performance of the proposed algorithm.

GPS(Global Positioning System)는 사용자 및 물체의 위치를 추정하기 위해 군사용과 상용으로 광범위하게 사용되고 있다. GPS는 다양한 고의적 또는 비고의적 간섭들로부터 영향을 받게 되는데, 이러한 간섭들을 제거하고 효율적인 데이터 수신을 위해 GPS의 정확한 도래각(AOA; angle-of-arrival) 추정이 필요하다. GPS의 신호전력은 잡음이나 간섭에 비해 매우 낮으므로, 역확산(despreading) 이전에 GPS 신호의 AOA를 추정하기는 매우 어려워 일반적으로 역확산 이후에 GPS의 AOA를 추정한다. 하지만, 고 출력의 간섭 존재 시 역확산 이후의 AOA 추정결과는 간섭신호의 AOA 들도 포함하고 있어, 어떤 추정 값이 GPS의 AOA 인지를 결정하여야 한다. 본 논문에서는 추정된 AOA 값들로부터 효과적으로 GPS 신호의 AOA를 선택하기 위한 알고리즘을 제안한다. 제안된 알고리즘은 역확산 이전과 이후의 AOA 들을 비교하여 정확한 GPS 신호의 AOA를 선택한다. 또한, 컴퓨터 시뮬레이션을 통해 GPS AOA 선택 알고리즘의 성능을 확인한다.

Keywords

References

  1. E.D. Kaplan and C. Hegarty, eds., Understanding GPS: Principles and Applications. Boston: Artech Hous, second ed., 2006
  2. W. D. Wilde, J.-M. Sleewaegen, A. Simsky, C. Vandewiele, E. Peeters, J. Grauwen, and F. Boon, "New fast signal acquistion unit for GPS/Galileo receivers," in Proc. IEEE/ION 2006 Position, Location, and Navigation Symposium, (San Diego, CA), pp. 1074-1079, Apr. 2006.
  3. Y.-T. LEE and J.-H. Lee, "Direction-finding method for cyclostationary signals in the presence of coherent sources," IEEE Trans. on Antennas and Propagation, vol. 49, pp. 1821-1826, Dec. 2001. https://doi.org/10.1109/8.982465
  4. F. Antreich, J. A. Nossek, G. Seco, and A. L. Swindlehurst, "The extended invariance principle applied to joint time-delay, frequency, and DOA estimation," in Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing, ICASSP 2008, (Las Vegas, NV), pp. 2485-2488, Apr. 2008.
  5. C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia: siam, 2000.
  6. M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration. New York: Wiley, 2001.
  7. S. Hwang and J. J. Shynk, "Multicomponent receiver architecture for GPS interference suppression," IEEE Trans. on Aerospace and Electronic Systems, vol. 42, pp. 489-502, Apr. 2006. https://doi.org/10.1109/TAES.2006.1642566
  8. R. A. Mozingo and T. W. Miller, Introduction to Adaptive Arrays. New York: Wiley, 1980.
  9. S. Hwang and J. J. Shynk, "Blind GPS receiver with a modified despreader for interference suppression," IEEE Trans. on Aerospace and Electronic Systems, vol. 42, pp. 503-513, Apr. 2006. https://doi.org/10.1109/TAES.2006.1642567
  10. B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.
  11. W. L. Myrick, J. S. Goldstein, and M. D. Zoltowski, "Low complexity anti-jam space-time processing for GPS," in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (Salt Lake City, UT), pp. 2233-2236, May 2001.

Cited by

  1. 적응 빔형성기의 입력신호 모델 분석 vol.12, pp.3, 2017, https://doi.org/10.13067/jkiecs.2017.12.3.433
  2. 송신 빔형성기 기반의 위성 시스템 구조 성능평가 vol.13, pp.4, 2018, https://doi.org/10.13067/jkiecs.2018.13.4.713