DOI QR코드

DOI QR Code

Thermal Stability of Grains in Al-Mg-(Ca) Alloys

Al-Mg-(Ca) 합금에서 결정립의 열적 안정성

  • Jun, Joong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합신공정연구그룹)
  • Received : 2012.04.27
  • Accepted : 2012.07.20
  • Published : 2012.07.31

Abstract

Role of Ca in grain growth behavior has been investigated in hot-rolled Al-3%Mg and Al-3%Mg-0.5%Ca wrought alloys. When annealed for 1 hr from 723 to 823 K, grain size of the Al-3%Mg alloy increased rapidly above 723 K, whereas grains were relatively stable up to 773 K for the Ca-containing alloy. Grain homogeneity of the Ca-containing alloy was better than that of the Ca-free alloy both in hot-rolled and annealed states. Calculated activation energies for grain growth were 77.6 and 85.9 kJ/mole in the range of 723 to 823 K for the alloys with 0 and 0.5%Ca, respectively. Taking SEM images and EDS results into account, enhanced thermal stability in response to Ca addition would be associated with Al4Ca compounds located along the grain boundaries, which eventually play a role in restricting grain growth at elevated temperatures.

Keywords

References

  1. M. Popovic and E. Romhanji : J. Mater. Proc. Tech., 125-126 (2002) 275. https://doi.org/10.1016/S0924-0136(02)00398-9
  2. S. Lathabai and P.G. Lloyd : Acta Mater., 50 (2002) 4275. https://doi.org/10.1016/S1359-6454(02)00259-8
  3. O. D. Sherby, R. A. Anderson and J. E. Dorn : J. Met., 3 (1951) 643.
  4. J. Gubicza, N. Q. Chinh, Z. Horita and T. G. Langdon : Mater. Sci. Eng. A, 387-389 (2004) 55. https://doi.org/10.1016/j.msea.2004.03.076
  5. K. E. Knipling, D. C. Dunand and D. N. Seidman : Z. Metallkd., 97 (2006) 246. https://doi.org/10.3139/146.101249
  6. V. G. Davydov, T. D. Rostova, V. V. Zakharov, Y. A. Filatove and V. I. Yelagin : Mater. Sci. Eng. A, 280 (2000) 30. https://doi.org/10.1016/S0921-5093(99)00652-8
  7. Y. A. Filatov, V. I. Yelagin and V. V. Zakharov : Mater. Sci. Eng. A, 280 (2000) 97. https://doi.org/10.1016/S0921-5093(99)00673-5
  8. K. L. Kendig and D. B. Miracle : Acta Mater., 50 (2002) 4165. https://doi.org/10.1016/S1359-6454(02)00258-6
  9. Z. M. Yin, Q. L. Pan, Y. H. Zhang and F. Jiang : Mater. Sci. Eng. A, 280 (2000) 151. https://doi.org/10.1016/S0921-5093(99)00682-6
  10. F. Rosalbino, E. Angelini, S. De Negri and A. Saccone and S. Delfino : Intermetllics, 11 (2003) 435. https://doi.org/10.1016/S0966-9795(03)00016-5
  11. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon : Acta Mater., 50 (2002) 553. https://doi.org/10.1016/S1359-6454(01)00368-8
  12. H. K. Kim and W. J. Kim : Mater. Sci. Eng. A, 385 (2004) 300. https://doi.org/10.1016/j.msea.2004.06.055
  13. F. A. Mohamed and T. G. Langdon : Metall. Trans., 5 (1974) 2339. https://doi.org/10.1007/BF02644014
  14. M Furukawa, Z. Horita, M. Nemoto, R. Z. Valief and T. G. Langdon : Acta Mater., 44 (1996) 4619. https://doi.org/10.1016/1359-6454(96)00105-X
  15. J. Q. Wang, Y. H. Liu, S. Imhoff, N. Chen, D. V. Louzguine-Luzgin, A. Takeuchi, M. W. Chen, H. Kato, J. H. Perepezko and A. Inoue : Intermetallics, 29 (2012) 35. https://doi.org/10.1016/j.intermet.2012.04.009
  16. J. K. Edgar : Trans. AIME, 180 (1949) 225.
  17. N. Kuroishi and K. Akechi : J. Jpn. Inst. Light Met., 34 (1984) 537. https://doi.org/10.2464/jilm.34.537