DOI QR코드

DOI QR Code

미소파괴음을 이용한 KURT 화강암의 손상에 관한 정량적 평가

Quantitative Damage Assessment in KURT Granite by Acoustic Emission

  • 투고 : 2012.04.23
  • 심사 : 2012.09.28
  • 발행 : 2012.11.15

초록

본 연구에서는 미소파괴음을 활용하여 한국 원자력 연구원 지하처분연구시설에서 채취한 화강암의 손상도를 정량적으로 평가하였다. 해석결과 균열손상기준은 균열개시, 균열손상응력은 일축압축강도의 약 48%, 72%이며 균열손상기준에 따른 암석의 손상은 시료에 가해지는 응력이 균열손상응력을 초과하면서부터 0.06에서 일축압축강도의 80%, 90%에서는 0.34, 0.60로 급격히 증가하였다. 이는 축 방향 변형계수를 활용한 손상도 결과와 유사하여 단순회귀분석 결과 두 기법의 상관관계는 0.90로 상관성은 매우 높은 것으로 나타났다. 이에 미소파괴음 에너지를 활용한 손상도 결과와 모어-쿨롱 파괴규준을 이용하여 응력수준에 따른 축 방향 변형계수, 암석의 강도, 점착력, 내부마찰각 변화를 분석한 결과 균열손상응력 이전까지는 원결과보다 각각 6%, 12%, 7%, 3% 감소하였지만 일축압축강도의 90%수준에서는 69%, 72%, 62%, 24%로 감소의 기울기는 급격히 증가하였다.

This paper presents the quantitative damage assessment of granite taken from KAERI Underground Research Tunnel using acoustic emission (AE). The results determined showed the crack initiation and crack damage stress occurred at 48%, 72% of uniaxial compressive strength (UCS) and until the applied stress level was reached the crack damage stress, the damage degree was 0.06. When the applied stress exceeded 80%, 90% of UCS, the damage degree were 0.34, 0.06 and which were similar to those obtained from axial deformation modulus. The simply regression analysis was used to interpret the relationship of the two damage assessment techniques and the two were highly correlated ($R^2$=0.90). Therefore, damage degree based on the AE energy and mohr-coulomb failure criterion were adopted to predict the mechanical properties. As results, the axial deformation modulus, rock strength, internal friction angle, and cohesion of KURT rock were reduced 6%, 12%, 7%, and 3% until the applied stress was 70% of UCS. But when the applied stress reached 90% of UCS, the results were more reduced 69%, 72%, 62%, and 24%, respectively.

키워드

참고문헌

  1. 권상기(2002) 고준위 방사성폐기물처분 연구, 한국자원공학회, 제39권 제1호, pp. 387-402.
  2. 이희근, 양형식(1997) 응용암석역학, 서울대학교 출판부.
  3. 장보안, 지훈, 장현식(2010) 황등화강암을 이용한 암석의 손상기준 결정방법 연구, 대한지질공학회지, 대한지질공학회, 제39권 제1호, pp. 89-100.
  4. 장수호, 이정인(2005) 응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구, 대한지질공학회지, 대한화약발파공학회, 제23권 제4호, pp. 31-44.
  5. 정주환(2010) 탄성파속도 측정법을 이용한 암반손상대 평가, 공학박사학위논문, 전남대학교대학원.
  6. 천대성, 박의섭, 정용복, 박철환, 신중호(2008) AE와 MS 이벤트를 이용한 계측기술, 한국암반공학회지, 한국암반공학회, 제18권 제1호, pp. 1-9.
  7. Anon. (1979) Classification of rocks and soils for engineering geological mapping Part 1: Rock and soil materials. Bull. Int. Assoc. Eng. Geol., Vol. 19, pp. 364-371. https://doi.org/10.1007/BF02600503
  8. Brown, E. T. (1981) rock characterization, testing and monitoring-ISRM suggested methods. Oxford, Pergamon Press.
  9. Bieniawski, Z. T. (1967) Stability concept of brittle fracture propagation in rock. Engineering Geology., Vol. 2, pp. 149-162. https://doi.org/10.1016/0013-7952(67)90014-2
  10. Bieniawski, Z. T. (1989) Engineering Rock Mass Classification. Wiley, NY.
  11. Brace, W. F., Paulding, B. W. Jr. and Scholz, C. (1966) Dilatancy in the fracture of crystalline rocks. J. Geophys. Res., Vol. 71, pp. 3939-3953. https://doi.org/10.1029/JZ071i016p03939
  12. Cai, M., Morioka, H., Kaiser, P. K., Tasaka, Y., Kurose, H., Minami, M., and Maejima, T. (2007) Back analysis of rock mass strength parameters using AE monitoring data. Int. J. Rock Mech. Min. Sci., Vol. 44, pp. 538-549. https://doi.org/10.1016/j.ijrmms.2006.09.012
  13. Cox, S. J. D. and Meredith, P. G. (1993) Microcrack formation and material softening in rock measured by monitoring acoustic emission. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 30, pp. 11-21. https://doi.org/10.1016/0148-9062(93)90172-A
  14. Diederichs, M. S. (1999) Instability of hard rock masses: The role of tensile damage and relaxation. Ph.D. Dissertation, University of Waterloo, Canada.
  15. Eberdhart, E., Stead, D., and Stimpson, B. (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sci., Vol. 32, pp. 361-380.
  16. Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S. (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J., Vol. 35, pp. 222-233. https://doi.org/10.1139/t97-091
  17. Grosse, G.U. and Ohtsu, M. (2008) Acoustic Emission Testing, Springer-Verlag Berlin Heidelberg.
  18. Gutenbergm, B. and Richter, C. F. (1954) Seismicity of the Earth and Associated Phenomena. Princeton, Princeton University Press, New Jersey.
  19. Hatton, C. G., Main, I. G., and Meredith, P. G. (1993) A comparison of seismic and structural measurements of scaling exponents during tensile sub-critical crack growth. J. Struct. Geol., Vol. 15, pp. 1485-1495. https://doi.org/10.1016/0191-8141(93)90008-X
  20. Kim, J. S., Kwon, S., Sanchez, M. and Cho, G. C. (2011) Geological storage of high level nuclear waste, KSCE Journal of Civil Engineering, Vol. 15, pp. 721-737. https://doi.org/10.1007/s12205-011-0012-8
  21. Kwon. S., Lee, C. S., Cho, S. J., Jeon, S. W. and Cho, W. J. (2009) An investigation of the excavation damaged zone at the KAERI underground research tunnel, Tunnelling Underground Space Technology, Vol. 24, pp. 1-13. https://doi.org/10.1016/j.tust.2008.01.004
  22. Loland, K. E. (1980) Continuous damage model for load-response estimation of concrete. Cement and Concrete Research, Vol. 10, pp. 395-402. https://doi.org/10.1016/0008-8846(80)90115-5
  23. Martin, C. D. and Chandler, N. D. (1994) The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 31, pp. 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  24. Maji, A. and Shah, S. P. (1988) Process zone and acoustic emission measurements in concrete. Exp Mech., Vol. 28, pp. 27-33. https://doi.org/10.1007/BF02328992
  25. Mogi, K. (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena. Bul1. Earthq. Res., Vol. 40, pp. 125-173.
  26. Ohtsu, M. (1991) Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test, Journal of Geophysical Research, Vol. 96, No. B4, pp. 6211-6221. https://doi.org/10.1029/90JB02689
  27. Ranjith, P. G., Jasinge, D., Song J. Y., and Choi, S. K. (2008) A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: Use of acoustic emission, Mechanics of Materials, Vol. 40, pp. 453-469. https://doi.org/10.1016/j.mechmat.2007.11.002
  28. Rao, M. V. M. S. and Lakschmi, P. K. J. (2005) Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture. Curr. Sci., Vol. 89, pp. 1577-1582.
  29. Shiotani, T., Bisschop, J. and van Mier, J. G. M. (2003) Temporal and spatial development of drying shrinkage cracking in cement based materials. Engineering Fracture Mechanics., Vol. 70, pp. 1509-1525. https://doi.org/10.1016/S0013-7944(02)00150-9
  30. Shiotani, T. and Ohtsu, M. (1999) Prediction of slope failure based on AE activity. ASTM., STP 1353, pp. 156-172.
  31. Shiotani, T., Ohtsu. M. and Ikedam. K. (2001a) Detection and evaluation of AE waves due to rock deformation. Construction and Building Materials., Vo. l.5, pp. 235-246.
  32. Shiotani, T., Yuyuma, S., Li, Z. and Ohtsu, M. (2001b) Application of AE improved b-value to quantitative evaluation of fracture process in concrete materails. Journal of Acoustic Emission, Vol. 18, pp. 118-133.
  33. Tang, Y.S. and Sailing, J.H. (1990) Radioactive waste management. Hemisphere Publising Co, New York.