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Abstract
Genetic variation in the Asian shore crab Hemigrapsus sanguineus was determined from partial mitochondrial DNA (mtDNA) 
sequences of the cytochrome b (Cytb) gene. Samples included 143 crabs from six localities along three coastlines in South Korea. 
A nucleotide sequence analysis revealed 38 variable sites in a 470-bp sequence, which defined 37 haplotypes. The haplotypes were 
not associated geographically and had a shallow genealogy. Pairwise FST tests and a two-dimensional scaling analysis revealed 
no significant genetic differentiation among most of the populations. The low pairwise comparison values, but significant genetic 
differentiation of a northeastern population from all other populations, might have been influenced by a restriction in gene flow 
caused by hydrographic conditions such as ocean boundaries. The high haplotype diversity, low nucleotide diversity, and time 
since H. sanguineus expansion in Korean coastal waters indicate rapid population growth and a recent, sudden expansion in the 
Late Pleistocene.
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Introduction

The Asian shore crab Hemigrapsus sanguineus is distrib-
uted widely in the western Pacific, including Hong Kong, 
Taiwan, Korean, Chinese, and Japanese coastal waters, and 
as far north as Sakhalin Island, Russia (Sakai, 1976; Fukui, 
1988; Dai and Yang, 1991; Hwang et al., 1993). It is abundant 
in rocky intertidal habitats and is an ecologically important 
predator in coastal ecosystems, as are other shore crab species 
(Kikuchi et al., 1981; Takada and Kikuchi, 1991; McDermott, 
1998a, 1998b; Lohrer et al., 2000). In Japan, the breeding 
season of H. sanguineus is March-October, with a main peak 

May-June (Fukui, 1988). It has a planktonic larval stage of 
more than 1 month before developing into the juvenile crab 
(Fukui, 1988). The larval dispersal pattern and preferred habi-
tat might have caused geographically distinct regional popula-
tions to become homogeneous.

Estimating genetic structure among populations using mo-
lecular markers has become a common approach to determin-
ing sustainable yields and genetic diversity (Dunham, 2004). 
The population genetic structures of some marine species are 
influenced by their larval dispersal pattern and behavior after 
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variable regions and a conserved gene content and arrange-
ment (Anderson et al., 1981). Therefore, mtDNA analysis has 
become a key method in evolutionary and ecological studies 
of crabs (Pfeiler et al., 2005; Cassone and Boulding, 2006; 
Azuma et al., 2008; Wang et al., 2008).

This study investigated the genetic variation and popula-
tion structure of H. sanguineus in Korean coastal waters using 
mtDNA cytochrome b (Cytb) sequences to assess phylogeo-
graphic and demographic patterns.

Materials and Methods

Sampling

Muscle samples were taken from 143 live crabs collected 
from six localities along three coastlines of Korea from 2009 
to 2010 (Table 1, Fig. 1). The collected samples were stored at 

spawning, which are determined by oceanographic features 
including sea currents, hydrological conditions, and physical 
barriers (Doyle et al., 1993; Hsieh et al., 2010). In general, 
most marine species have limited population substructures 
and high levels of gene flow because of the effect of sea cur-
rents. Ocean structure and dynamics, including current bound-
aries and hydrographic conditions, have caused reproductive 
and partial genetic isolation in geographically distinct regional 
populations (Wares et al., 2001; Bilton et al., 2002). 

Although DNA markers are expected to overcome defi-
ciencies in allozyme analysis by increasing the accuracy and 
resolution of population-structure assessments in crab species 
(McMillen-Jackson et al., 1994; Creasey et al., 1997), there 
are few reports on the use of mitochondrial DNA (mtDNA) to 
measure genetic variation in shore crabs (Cassone and Bould-
ing, 2006). Maternally inherited mtDNA has greater sequence 
variability than do most nuclear genes (Brown et al., 1979). 
Moreover, it has a compact genome size in both conserved and 

Fig. 1. Sampling locations of six Asian shore crab Hemigrapsus sanguineus populations and ocean current flow pattern in the Korean waters. BUA, Buan; 
GUJ, Geoje; GUR, Guryonpo; HAE, Haenam; JUM, Jumunjin; TAE, Taean.

Table 1. Sampling sites, and dates, geographical coordinates, number of individuals examined (n), haplotype and nucleotide diversity (π) of Asian shore 
crab Hemigrapsus sanguineus populations

Sampling site Abbreviation Date of 
collection

Geographical co-ordinates n No. of  
haplotypes

Haplotype 
diversity
(h, ±SD)

Nucleotide 
diversity 

(π)Latitude Longitude
Taean TAE June, 2009 36°28′10.40" N 126°26′07.19" E 24 6 0.616 ± 0.0911 0.0017
Buan BUA June, 2009 35°44′21.83" N 126°35′49.50" E 24 9 0.696 ± 0.0962 0.0021
Haenam HAE June, 2009 34°20′21.05" N 126°29′28.47" E 24 11 0.779 ± 0.0815 0.0028
Geoje GUJ April, 2010 34°54′18.50" N 128°44′52.55" E 24 7 0.634 ± 0.0973 0.0019
Guryonpo GUR April, 2010 36°03′33.00" N 129°31′17.12" E 24 13 0.880 ± 0.0556 0.0034
Jumunjin JUM April, 2009 37°53′38.53" N 128°50′06.77" E 23 11 0.778 ± 0.0901 0.0027
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permutations. Gene flow among populations was estimated 
with Nem, the number of migrations per generation between 
population pairs (Slatkin, 1993) using the following equation: 

Nem = (1/FST -1)/4, 

where N is the effective population size, m is the effective 
proportion of immigrants, and FST is the fixation index. To ex-
amine the relationships among populations visually, we used 
a two-dimensional scaling (TDS) analysis based on the matrix 
of pairwise FST values from the Cytb sequence data calculated 
by SPSS version 14.0K (SPSS, Inc., Chicago, IL, USA).

Neutral expectation and historic demographic expansions 
were investigated by examining Fu’s FS and Tajima’s D and 
mismatch distributions with the sudden expansion model 
(Rogers and Harpending, 1992). A goodness-of-fit test was 
used to test the validity of the sudden-expansion model using 
a parametric bootstrap approach based on the sum of squared 
deviations (SSD) to compare the observed and estimated mis-
match distributions (Schneider and Excoffier, 1999). Both the 
neutrality test and mismatch distribution analysis were per-
formed in ARLEQUIN version 2000 (Schneider et al., 2000). 
Since the mutation rate of the H. sanguineus Cytb gene over 
the estimated time since expansion was unknown, a molecu-
lar clock was calculated using the sequence-divergence rates 
of mitochondrial protein coding regions for other marine 
crustaceans; rates ranged from 2.2 to 3.1% per million years 
(Knowlton and Weigt, 1998; Schubart et al., 1998).

Results

Cytb variation in H. sanguineus

The degenerate primers newly designed in this study 
(Cyt9237 and Cyt10050) successfully amplified the mtDNA 
Cytb region of the 143 H. sanguineus individuals. Direct se-
quencing of the PCR products with two internal primers (Hs-
CytF and HsCytR) yielded a fragment with an amplicon size 
of 470 bp, which revealed 38 variable nucleotide sites defin-
ing 37 haplotypes among the populations (Table 2). The vari-
able nucleotide sites observed consisted of 33 transitions and 
four transversions. All substitutions were biallelic except one, 
which was triallelic, suggesting the occurrence of a single base 
substitution among sequences. The nucleotide sequences of 
the 37 haplotypes have been deposited in the DDBJ/GenBank 
database under accession numbers AB570203-AB570239.

The parsimony network of the Cytb haplotypes in H. san-
guineus did not provide evidence of geographical associa-
tion (Fig. 2). In the network, two focal haplotypes, HeS1 and 
HeS12, were abundant, whereas the others, including single-
tons, were rare and radiated from these focal haplotypes. The 
distribution of the 37 haplotypes among the six H. sanguin-
eus populations is presented in Table 3. Among them, 28 
were found at single localities, and nine (HeS1, HeS4, HeS9, 

-20°C or kept in 100% ethanol at room temperature until used.

PCR amplification and sequence analysis

Genomic DNA was extracted from about 20 mg of each 
specimen by a PUREGENE DNA isolation kit (Gentra Sys-
tems, Minneapolis, MN, USA) following the manufacturer’s 
instructions. The purified DNA was dried at room temperature 
and dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA; 
pH 8.0). To amplify the Cytb gene, a pair of degenerate 
primers (Cyt9237  5′‑GTWGCHCAYATTTGYCGAGA-3′; 
Cyt10050  5′‑ACWGGKCGWGCWCCAATTCA-3′) with 
expected amplicon sizes of 850 bp was designed based on 
mtDNA sequences of the closely related crab species available 
in GenBank (AB093006, AY659990, AY562127, FJ797435, 
FJ827758-827761). The PCR amplification was performed 
with a thermocycler DNA Engine (MJ Research, Tokyo, Ja-
pan). in a 20-μL reaction volume containing 1-2 μL of genom-
ic DNA, 2 μM of each primer, 0.25 mM of each dNTP, 1 unit 
of Takara LA Taq DNA polymerase (Takara Shuzo, Kyoto, Ja-
pan), and 2 μL of 10× LA Taq reaction buffer (Takara Shuzo). 
The PCR conditions consisted of preheating at 94°C for 5 min, 
followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 
72°C for 30 s, with final extensions at 72°C for 5 min. The 
fragment size of the PCR product was verified using 2% aga-
rose gel electrophoresis after ethidium bromide staining. The 
PCR product was purified with the AccuPrep PCR Purification 
Kit (Bioneer, Daejeon, Korea). After cycle sequencing with 
the ABI PRISM BigDye Terminator v3.1 Cycle Sequencing 
Ready Reaction Kit (Applied Biosystems, Foster City, CA, 
USA), the purified PCR product was sequenced directly on 
an ABI 3730xl DNA Analyzer (Applied Biosystems) with 
two newly designed internal primers, HsCytF (5′‑GGGGT-
CAAATATCATTCTGG-3′) and HsCytR (5′‑GCCTTTG-
GAATTTTGAAGAG-3′).

Data analysis

The sequence fragments obtained in this study were aligned 
with GENETIX-WIN ver. 4.0.1 (Software Development, To-
kyo, Japan) to identify sequence variants. The integrated soft-
ware package DnaSP version 5 (Librado and Rozas, 2009) 
was used to determine the genotypes or haplotypes. A parsi-
mony network connecting the observed haplotypes to resolve 
the genealogy was plotted with TCS version 1.21 (Clement et 
al., 2000). Genetic variation within the populations, expressed 
as haplotype diversity (h) and nucleotide diversity (π), was 
estimated according to Nei (1987) based on Kimura’s two-
parameter distance method using K and DA in the REAP pro-
gram (McElroy et al., 1992). Pairwise population FST values 
were calculated to estimate the genetic differentiation among 
the populations according to Slatkin and Hudson (1991) us-
ing ARLEQUIN version 3.1 (Excoffier et al., 2005). The sig-
nificance of each FST value was tested using 10,000 random 
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Table 2. Variable nucleotide sites in 470 bp sequences of mitochondrial cytochrome b gene partial sequences in Asian shore crab Hemigrapsus sanguineus

 Haplotype Variable nucleotide sites
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8
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3
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3
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4
5
5

4
7
0

HeS1 A A C T G A T T G T A C T G C T A A C T T G A C A C T T C A G C A A T A T A
HeS2 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS4 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS5 ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS6 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙
HeS7 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS8 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS9 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS10 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙
HeS11 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS12 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS13 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS14 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A T ∙ ∙ ∙ ∙ ∙ ∙
HeS15 ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS16 ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS17 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS18 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS19 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS20 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS21 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙
HeS22 ∙ ∙ ∙ ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS23 G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS24 ∙ ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS25 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G
HeS26 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS27 ∙ G ∙ ∙ ∙ ∙ ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS28 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS29 ∙ ∙ ∙ ∙ ∙ G ∙ ∙ A ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS30 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙
HeS31 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS32 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS33 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G T ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS34 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS35 ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
HeS36 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ ∙ ∙
HeS37 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ C ∙ T ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Fig. 2. A single minimum spanning tree for the 38 mitochondrial cytochrome b region haplotypes of Asian shore crab Hemigrapsus sanguineus (Table 2). 
Circle sizes reflect haplotype abundance..
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pairwise population FST estimates were large when JUM was 
compared with the other populations. These findings were evi-
dent in the TDS analysis and Nem values (Fig. 3). Overall, the 
TAE, BUA, HAE, GUJ, and GUR populations were geneti-
cally close to one another, but distinct from JUM.

Mismatch distributions for all populations pooled and the 
northernmost population (JUM) are shown in Fig. 4. The 
pooled populations and JUM had no additional distribution 
peaks; the highest frequency occurred at one difference. The 
D, Fu’s FS, and SSD (Table 5) values indicated expansion in 
these populations. Tajima’s D and Fu’s FS were significantly 
negative, with markedly reduced SSD in the pooled popula-

HeS12, HeS21, HeS26, HeS30, HeS32, and HeS35) were ob-
served in two or more localities. A number of individuals from 
the populations examined had the HeS12 and HeS26 haplo-
types, although these were not found in JUM. HeS1 occurred 
in all populations.

The haplotype and nucleotide diversities of H. sanguineus 
demonstrated varying levels of genetic variation among popu-
lations. Variation was higher in the Guryonpo (GUR), Haenam 
(HAE), and Jumunjin (JUM) populations (Table 1). Reduced 
haplotype diversity was observed in the Taean (TAE), Buan 
(BUA), and Geoje (GUJ) populations.

Population genetic analysis

The pairwise population FST estimates and migration rate 
based on the Cytb sequences are presented in Table 4. Most 
pairwise values were not significantly different among popu-
lations. Although the pairwise FST estimates showed no clear 
genetic differentiation (low values among populations), the 

Table 3. Distribution of mitochondrial cytochrome b haplotypes 
among 6 populations of Asian shore crab Hemigrapsus sanguineus. Sam-
pling site abbreviations (first row) are listed in Table 1

TAE BUA HAE GUJ GUR JUM Total
HeS1 14 43 11 14 8 11 101
HeS2 1 1
HeS3 1 1
HeS4 1 1 2
HeS5 1 1
HeS6 1 1
HeS7 1 1
HeS8 2 2
HeS9 1 1 2
HeS10 1 1
HeS11 1 1
HeS12 6 4 4 5 3 22
HeS13 1 1
HeS14 1 1
HeS15 1 1
HeS16 1 1
HeS17 1 1
HeS18 1 1
HeS19 1 1
HeS20 1 1
HeS21 1 1 2
HeS22 2 2
HeS23 1 1
HeS24 1 1
HeS25 1 1
HeS26 1 1 1 1 2 6
HeS27 1 1
HeS28 1 1
HeS29 1 1
HeS30 1 1 1 3
HeS31 1 1
HeS32 1 1 2
HeS33 1 1
HeS34 1 1
HeS35 1 2 3
HeS36 1 1
HeS37 1 1

TAE, Taean; BUA, Buan; HAE, Haenam; GUJ, Geoje; GUR, Guryonpo; JUM, 
Jumunjin.

Fig. 3. Two-dimensional scaling analysis based on the matrix of 
pairwise FST values from the mitochondrial cytochrome b sequence data 
for Asian shore crab Hemigrapsus sanguineus. BUA, Buan; GUJ, Geoje; GUR, 
Guryonpo; HAE, Haenam; JUM, Jumunjin; TAE, Taean.

Fig. 4. Mismatch distribution constructed using pairwise differences 
among mitochondrial DNA (mtDNA) haplotypes of Asian shore crab 
Hemigrapsus sanguineus from the pooled populations and from a 
single northeastern population (Jumunjin [JUM]). Solid lines, observed 
frequency; dashed lines, frequency distribution expected from a sudden 
expansion model.
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A reduced genetic diversity in the TAE and BUA populations 
from the west coast in the Yellow Sea compared with the other 
regional populations, except the GUJ population, was observed 
from the haplotype and nucleotide diversities. The western Ko-
rean populations showed no genetic differentiation from the 
southern populations as inferred from the pairwise FST values. 
Therefore, crabs might have been introduced continuously with 
high rates of gene flow to the TAE and BUA populations from 
other sources following a reduction in effective population size.

The estimated pairwise FST values, Nem rate, and TDS analy-
sis indicate that substantial gene flow has occurred among the 
populations, suggesting that larval behavior and sea currents are 
responsible for the high rates of gene flow. The passive dispersal 
of planktonic larvae and sedentary lifestyle of adult marine in-
vertebrates limit the formation of population substructure (Les-
sios et al., 2003; Waters and Roy, 2004). Many other marine 
crab species reportedly have high levels of gene flow between 
populations or regions (Beckwitt, 1985; Merkouris et al., 1998; 
Azuma et al., 2008). Hwang et al. (1993) reported that the plank-
tonic larval stage of H. sanguineus persists for 25 days until 
metamorphosis on the sea floor to form the first crab stage. In 
general, crustacean species with similar persistent pelagic larval 
stages have a high dispersal potential that produces genetic ho-
mogeneity among local populations (Palumbi, 1994). The Tsu-
shima Warm Current (TC) branches off the Kuroshio Current, 
with part of the TC running into the Yellow Sea and the main 
part entering the East Sea along the Korean Peninsula (Fig. 1). 
Therefore, the TC might transport H. sanguineus larvae to the 
western coast of Korea.

Despite the lack of geographically associated haplotypes and 
genetic structure within and among populations, our analyses 
indicated a degree of genetic differentiation between the north-
ernmost population (JUM) in the East Sea and the other popula-
tions. The sub-polar front in the East Sea is similar to the west-
ern boundary current in that a polar front forms at the boundary 
between the low-temperature, low-salinity waters of the north-
ern region and the high-temperature, high-salinity waters of the 
southern region (Rhein et al., 1995; Pickart et al., 1997). The 
sub-polar front, which extends along the coast of Japan before 
turning abruptly at the Noto Peninsula frontal region toward the 
center of the East Sea, has a close relationship to the TC and 
cold-water currents, including the Liman Current (LC) (Senjyu, 
1999; Ichikawa and Beardsley, 2002) (Fig. 1). Restricted or se-

tion group and JUM population, a parameter combination that 
strongly supported sudden expansion. Sudden expansion of 
the pooled population group was estimated to have occurred 
0.042-0.060 million years ago (Ma) and that in the JUM popu-
lation, 0.049-0.069 Ma (Table 5).

Discussion

The genetic variation analysis of the mitochondrial Cytb gene 
revealed the followings: (i) haplotype and nucleotide diversity 
occurred at various levels of genetic variation and (ii) there was 
a low level of genetic differentiation in coastal areas of Korea, 
but there was some genetic differentiation of the northernmost 
population (JUM) in the East Sea from the other populations. 
The observed haplotypes from the Cytb region in H. sanguineus 
were arrayed in star-like genealogies, each with several closely 
related, low-frequency haplotypes around a central high-fre-
quency haplotype, suggesting a shallow haplotype genealogy. 
The star-like pattern and shallow genealogy indicate recent 
appearance and rapid population growth (Slatkin and Hudson, 
1991; Rogers and Harpending, 1992). Our estimates showed 
that H. sanguineus began expanding 42,862-60,396 years ago 
(Table 5). High haplotype diversity (0.616-0.880) but low nucle-
otide diversity (0.0017-0.0034) within the populations indicates 
that the populations might have experienced historically rapid 
population growth from an ancestral population with a small 
effective population size in the Late Pleistocene (Avise, 2000).

Table 5. Asian shore crab Hemigrapsus sanguineus: parameters of the sudden expansion model and estimated time since expansion

Populations Sample 
size

D
(P-value)

FS
(P-value)

SSD
(P-value)

τ
(95% CI)

θ0
(95% CI)

θ1
(95% CI)

Time since 
expansion (y)

Entire 143      -2.491
(0.001)

          -29.249
(0.000)

0.003
(0.059)

1.249
(0.538-1.519)

0.000
(0.000-0.742)

2,071.875
(7.677-5,351.875) 42,862-60,397

JUM   23      -1.970
(0.013)

            -8.261
(0.000)

0.004
(0.482)

1.440
(0.184-2.205)

0.000
(0.000-1.493)

1,905.000
(11.560-6,730.000) 49,417-69,633

D, Tajima’s D; FS, Fu’s FS; SSD, sum of squared deviations in the goodness of-fit-test; τ , time since expansion measured in mutational time units; CI, confi-
dence interval; θ0 and θ1, population sizes scaled by mutation rate before and after expansion, respectively.

Table 4. Pairwise FST (below the diagonal) and Nem (above the diago-
nal) estimates among the six populations of Asian shore crab Hemigrapsus 
sanguineus. 

TAE BUA HAE GUJ GUR JUM
TAE 11.1 28.0 14.1 23 3.5
BUA -0.023 21.1 12.8 18 6.3
HAE -0.009      -0.012 31.5 50.3 7.8
GUJ -0.018      -0.020      -0.008 15.9 4.3
GUR -0.011      -0.014      -0.005      -0.016 8.0
JUM      0.067*      0.038*         0.031*         0.055*         0.030*

TAE, Taean; BUA, Buan; HAE, Haenam; GUJ, Geoje; GUR, Guryonpo; JUM, 
Jumunjin.
*Significant differentiation (P < 0.05) on the exact test (Raymond and 
Rousset, 1995). 
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lective gene flow from main distributions can result from such 
physical barriers, which restrict larval transport (Hedgecock, 
1986; Scheltema, 1986; Bowen and Avise, 1990; Palumbi, 1994; 
Burton, 1998). The JUM population is located at the sub-polar 
front, where the cold and warm currents of the East Sea meet. 
Therefore, the balanced effects of the cold (LC) and warm (TC) 
water currents in the East Sea might explain the genetic differen-
tiation between the JUM population and other wild populations.

The mismatch distribution in our data was unimodal, and the 
neutrality test gave a significantly negative value, suggesting re-
cent population expansion of H. sanguineus in Korea. Estimates 
of other mismatch distribution parameters corroborate this evi-
dence. Therefore, H. sanguineus population expansion in Ko-
rean coastal waters resulted from rapid population growth and 
recent, sudden expansion in the Late Pleistocene. This was cor-
roborated by the star-like genealogy of the haplotypes, high hap-
lotype diversities, close genetic similarities among haplotypes, 
mismatch distribution pattern supporting a sudden expansion 
model, and estimated expansion time. However, this perspective 
remains ambiguous, and further extended sampling from Hong 
Kong through Japan to Russia is necessary to clarify the histori-
cal influences.

Based on our results, the H. sanguineus populations might 
be one large panmictic population in Korean coastal waters, 
with the exception of the northeastern population. This genetic 
information about the current condition of H. sanguineus will 
be useful in developing a conservation strategy and subsequent 
ecological monitoring. H. sanguineus has colonized the eastern 
coast of the USA, Atlantic France, and the Netherlands in recent 
years. Comparative studies of genetic variation and structure in 
donor and invader populations using the molecular procedures 
employed in this study are essential for developing a greater un-
derstanding of the spatiotemporal invasion-pattern mechanism. 
Finally, we demonstrated that genetic variation analysis using 
mtDNA Cytb sequences is a useful model for research on popu-
lation-level studies in closely related species.
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