DOI QR코드

DOI QR Code

Electromagnetic Vector Fields Simulation with Mathematica

전자기 벡터장 시각화를 위한 Mathematica 시뮬레이션

  • Choi, Yong-Dae (Department of Microbiology & Nanomaterials, Mokwon University) ;
  • Yun, Hee-Joong (Korea Institute of Science and Technology Information)
  • 최용대 (목원대학교 미생물나노소재학과) ;
  • 윤희중 (한국과학기술정보연구원)
  • Received : 2011.12.14
  • Accepted : 2012.02.27
  • Published : 2012.03.30

Abstract

Visualization of the electromagnetic vector fields are presented and examined with Mathematica. Vector fields may be used to represent a great of many physical quantities in various area of physics, including electromagnetism with vector differential operators. Because they deal with abstract, three-dimensional fields that are some times very difficult to visualize, electromagnetism can be conceptually rather difficult. Visual representation of such an abstract vector fields is invaluable to student or researchers working in this field and also helps teaching electromagnetism to physics or engineering students. Mathematica provides a wider range of graphical tools including plot of vector fields and vector analysis, which can be applied to visualization of electromagnetic system. We have visualized the most fundamental concepts of the electromagnetic vector $\vec{E}=-\vec{\nabla}_{\varphi}$, $\vec{D}={\epsilon}\vec{E}$, $\vec{\nabla}{\times}\vec{A}$, $\vec{B}={\mu}\vec{H}$, $\vec{B}={\mu}_0(\vec{H}+\vec{M})$, which are confirmed with vector calculations and valid graphically with some presentations.

전자기장을 포함한 대부분의 물리학적 시스템이 벡터 미분 연산자들로 기술되며 또한 벡터연산을 통하여 계산된다. 그러므로 이들 벡터장들이 유전 및 자성물질 시스템들과 상호작용할 때 물리적 체계를 기술하고 계산하려면 정확한 전자기 벡터장의 지식체계를 이해할 필요가 있다. 그런데 이들 대부분 추상적 개념들을 직관적으로 이해하기에는 쉽지 않기 때문에 이들 추상적 개념의 시각화 표현 작업은 오늘날 지식정보화 수행과정에서 매우 중요한 과제의 하나다. 우리는 전자기학 체계를 구성하는 가장 기본적인 벡터장: $\vec{E}=-\vec{\nabla}_{\varphi}$, $\vec{D}={\epsilon}\vec{E}$, $\vec{\nabla}{\times}\vec{A}$, $\vec{B}={\mu}\vec{H}$, $\vec{B}={\mu}_0(\vec{\nabla}_{\varphi}{^*}+\vec{M})$들의 가시화 시뮬레이션을 Mathematica 프로그램으로 작성하여 추상적인 전자기벡터장의 시각화 모델을 제시하였다. 이 시뮬레이션을 전자기 벡터장의 물리학적 지식체계를 탐구해 가는 기본 플랫폼으로 활용할 수 있다.

Keywords

References

  1. J. D. Jackson, Classical Electrodynamics (John Wiley & Soms, New York, 1975), pp.196, pp.555.
  2. J. R. Reitz, F. J. Milford, and W. Christy, Foundation of electromagnetic theory (Addison-Wesley, Reading, Massachusetts, 1993), pp.46-55, pp.558-574.
  3. George B. Arfken and Hans J. Walker, Mathematical methods for physicists (Academic Press, San Diego, 1996), pp.99-154.
  4. Keith R. Symon, Mechanics (Addison-Wesley, Reading, Massachusetts, 1971), pp.410-443.
  5. J. B. Marion, Classical dynamics (Academic Press, San Diego, 1970), pp.359-384.
  6. D. J. Griffiths, Introduction to electrodynamics (Prentice Hall, New Jersey, 1994), p.181.
  7. Edward M. Purcell, Electricity and magnetism (mcgrawhill book company, New York, 1965), pp.327-329.
  8. H. J. Yun, Sae Mulli 53, 309 (2006)
  9. H. J. Yun, Sae Mulli 53, 452 (2006).
  10. Patrick H. Vaccarro, Nature 458, 289 (2009). https://doi.org/10.1038/458289a
  11. http://www.wolfram.com/solutions/highered/
  12. http://www.ni.com/labview/ko/
  13. http://www.exelisvis.com/ProductsServices/IDL.aspx
  14. http://www.oracle.com/index.html
  15. http://java.sun.com/
  16. http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/
  17. http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magvec.html
  18. http://www.emworks.com/product/preview/
  19. Bernard Thaller, The Mathematica Journal 7, 163 (1998).
  20. Phil Ramsden, The Mathematica Journal 7, 308 (1999).
  21. Bernhard Voelkl, The Mathematica Journal 13, 201 (2011).
  22. Rovert L. Zimmerman and Frederic I. Olness, Mathematica for Physics (Addison-Wesley, Massachusetts, 1995), pp.107-129.
  23. Partric T. Tamm, A Physicist's Guide to Mathematica (Academic Press, San Diego, 1997), pp. 379-408.
  24. D. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, Adv. Funct. Mater, 20, 3064-3075 (2011).
  25. Yao-Xiong Huang, J. Appl. Phys. 76, 2575 (1994). https://doi.org/10.1063/1.357552
  26. Y. D. Choi, H. J. Yun, J. B. Kim, W. H. Lee, Y. J. Shin, and D. I. Yang, J. Korean Vacuum Soc. 1, 360-370 (1992).
  27. S. S. Hong, J. Y. Lim, and Y. H. Shin, J. Korean Vacuum Soc. 20, 313-321 (2011). https://doi.org/10.5757/JKVS.2011.20.5.313
  28. R. Ehrlich, J. Tuszynski, L. Roelofs, and R. Stoner, Electricity and Magnetism Simulations (John Willey & Sons, New York, 1995), pp.120-130.
  29. Wolfram Research, The Mathematica 4.0 Standard Addon Packages (Wolfram Media, Illinois, 1999).
  30. H. J. Yun, Applied Surface Science 214, 312 (2003). https://doi.org/10.1016/S0169-4332(03)00528-2
  31. H. J. Yun, Sae Mulli 50, 134 (2005).
  32. http://library.wolfram.com/infocenter/Conferences/6466/
  33. http://home.mokwon.ac.kr/-heejy/program.htm