참고문헌
- Aker, J. and S. C. de Vries. 2008. Plasma membrane receptor complexes. Plant Physiol. 147, 1560-1564. https://doi.org/10.1104/pp.108.120501
- Albrecht, C., E. Russinova, B. Kemmerling, M., Kwaaitaal, and S. C. de Vries. 2008. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol. 148, 611-619. https://doi.org/10.1104/pp.108.123216
- Avraham, R. and Y. Yarden. 2011. Feedback regulation of EGFR signaling, decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104-117. https://doi.org/10.1038/nrm3048
- Bar, M., M. Sharfman, M. Ron, and A. Avni. 2010. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63, 791-800. https://doi.org/10.1111/j.1365-313X.2010.04282.x
- Cano-Delgado, A., Y. Yin, C. Yu, D., Vafeados, S. Mora-García, J. C. Cheng, K. H. Nam, J. Li, and J. Chory. 2004. BRL1 and BRL3 are novel Brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341-5351. https://doi.org/10.1242/dev.01403
- Chinchilla, D., L. Shan, P. He, S. C. de Vries, and B. Kemmerling. 2009. One for all, The receptor-associated kinase BAK1. Trends Plant Sci. 14, 535-541. https://doi.org/10.1016/j.tplants.2009.08.002
- Choe, S., R. J. Schmitz, S., Fujioka, S. Takatsuto, M. O. Lee, S. Yoshida, K. A. Feldmann, and F. E. Tax. 2002. Arabidopsis brassinosteroid insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol. 130, 1506-1515. https://doi.org/10.1104/pp.010496
- Clouse, S. D. 2002. Brassinosteroid signaling, novel downstream components emerge. Curr. Biol. 12, R485-487. https://doi.org/10.1016/S0960-9822(02)00964-8
- Clouse, S. D. 2011. Brassinosteroid signal transduction, From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell doi, 10.1105/tpc.111.084475.
- Clouse, S. D., M. Langford, and T. C. McMorris. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671-678. https://doi.org/10.1104/pp.111.3.671
- Clouse, S. D. and J. M. Sasse. 1998. BRASSINOSTEROIDS, Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451. https://doi.org/10.1146/annurev.arplant.49.1.427
- Colcombet, J., A. Boisson-Dernier, R. Ros-Palau, C. E. Vera, and J. I. Schroeder. 2005. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350-3361. https://doi.org/10.1105/tpc.105.036731
- Deng, Z., X. Zhang, W. Tang, J. A. Oses-Prieto, and N. Suzuki. 2007. A proteomics study of brassinosteroid response in Arabidopsis. Mol. Cell Proteomics 6, 2058-2071. https://doi.org/10.1074/mcp.M700123-MCP200
- Di Rubbo, S., N. G. Irani, and E. Russinova. 2011. PP2A Phosphatases, The "On-Off" Regulatory Switches of Brassinosteroid Signaling. Sci. Signal. 4, pe25. https://doi.org/10.1126/scisignal.2002046
- Eden, E. R., I. J. White, and C. E. Futter. 2009, Down-regulation of epidermal growth factor receptor signaling within multivesicular bodies. Biochem. Soc. Trans. 37, 173-177. https://doi.org/10.1042/BST0370173
- Ehsan, H., W. K. Ray, B. Phinney, X. Wang, S. C. Huber, and S. D. Clouse. 2005. Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-beta receptor interacting protein. Plant J. 43, 251-261. https://doi.org/10.1111/j.1365-313X.2005.02448.x
- Friedrichsen, D. M., C. A. Joazeiro, J. Li, T. Hunter, and J. Chory. 2000. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247-1256. https://doi.org/10.1104/pp.123.4.1247
- Fujioka, S. and T. Yokota. 2003. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137-164. https://doi.org/10.1146/annurev.arplant.54.031902.134921
- Gampala, S. S., T. W. Kim, J. X. He, W. Tang, Z. Deng, M. Y. Bai, S. Guan, S. Lalonde, Y. Sun, J. M. Gendron, H. Chen, N. Shibagaki, R. J. Ferl, D. Ehrhardt, K. Chong, A. L. Burlingame, and Z. Y. Wang. 2007. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell 13, 177-189. https://doi.org/10.1016/j.devcel.2007.06.009
- He, J. X., J. M. Gendron, Y. Yang, J. Li, and Z. Y. Wang. 2002. The GSK3- like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185-10190. https://doi.org/10.1073/pnas.152342599
- He, K., X. Gou, R. A. Powell, H. Yang, T. Yuan, Z. Guo, and J. Li. 2008. Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signal. Behav. 3, 813-815. https://doi.org/10.4161/psb.3.10.5890
- He, K., X. Gou, T., Yuan, H. Lin, T. Asami, S. Yoshida, S. D. Russell, and J. Li. 2007. BAK1 and BKK1 regulate brassinosteroid- dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol. 17, 1109-1115. https://doi.org/10.1016/j.cub.2007.05.036
- Hecht, V., J. P. Vielle-Calzada, M. V. Hartog, E. D. Schmidt, K. Boutilier, U. Grossniklaus, and S. C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127, 803-816. https://doi.org/10.1104/pp.010324
- Heese, A., D. R. Hann, S. Gimenez-Ibanez, A. M. Jones, K. He, J. Li, J. I. Schroeder, S. C. Peck, and J. P. Rathjen. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217-12222. https://doi.org/10.1073/pnas.0705306104
- Jaillais, Y., M. Hothorn, Y. Belkhadir, T. Dabi, Z. L. Nimchuk, E. M. Meyerowitz, and J. Chory. 2011. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232-237. https://doi.org/10.1101/gad.2001911
- Janssens, V., S. Longin, and J. Goris. 2008. PP2A holoenzyme assembly, In cauda venenum (the sting is in the tail). Trends Biochem. Sci. 33, 113-121. https://doi.org/10.1016/j.tibs.2007.12.004
- Karlova, R., S. Boeren, E. Russinova, J. Aker, J. Vervoort, and S. C. de Vries. 2006. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID- INSENSITIVE1. Plant Cell 18, 626-638. https://doi.org/10.1105/tpc.105.039412
- Karlova, R., S. Boeren, W. van Dongen, M. Kwaaitaal, and J. Aker. 2009. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics 9, 368-379. https://doi.org/10.1002/pmic.200701059
- Kemmerling, B., A. Schwedt, P. Rodriguez, S. Mazzotta, M. Frank, S. A. Qamar, T. Mengiste, S., Parker, J. E. Betsuyaku, C. Mussig, B. P. Thomma, C. Albrecht, S. C. de Vries, H. Hirt, and T. Nurnberger. 2007. The BRI1-associated kinase 1, BAK1, has a brassinolide independent role in plant cell-death control. Curr. Biol. 17, 1116-1122. https://doi.org/10.1016/j.cub.2007.05.046
- Kim, T. W., S. Guan, A. L. Burlingame, and Z. Y. Wang. 2011. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK-3-like kinase BIN2. Mol. Cell 43, 561-571. https://doi.org/10.1016/j.molcel.2011.05.037
- Kim, T. W., S. Guan, Y. Sun, Z. Deng, W. Tang, J. X. Shang, Y. Sun, A. L., Burlingame, and Z. Y. Wang. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biol. 11, 1254-1262. https://doi.org/10.1038/ncb1970
- Kim, T. W. and Z. Y. Wang. 2010. Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann. Rev. Plant Biol. 61, 681-704. https://doi.org/10.1146/annurev.arplant.043008.092057
- Kinoshita, T., A. Cãno-Delgado, H. Seto, S. Hiranuma, S. Fujioka, S. Yoshida, and J. Chory. 2005. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. https://doi.org/10.1038/nature03227
- Li, J. and J. Chory. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929-938. https://doi.org/10.1016/S0092-8674(00)80357-8
- Li, J. and K. H. Nam. 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-1301.
- Li, J., J. Wen, K. A. Lease, J. T. Doke, F. E. Tax, and J. C. Walker. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222. https://doi.org/10.1016/S0092-8674(02)00812-7
- Liu, T. and Z. H. Feng. 2010, Regulation of TGF-beta signaling by protein phosphatases. Biochem. J. 430, 191-198. https://doi.org/10.1042/BJ20100427
- Mora-Garcia, S., G. Vert, Y. Yin, A. Cãno-Delgado, H. Cheong, and J. Chory. 2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448-460. https://doi.org/10.1101/gad.1174204
- Muto, H., N. Yabe, T. Asami, K. Hasunuma, and K. T. Yamamoto. 2004. Overexpression of constitutive differential growth 1 gene, which encodes a RLCKVII-subfamily protein kinase, causes abnormal differential and elongation growth after organ differentiation in Arabidopsis. Plant Physiol. 136, 3124-3133. https://doi.org/10.1104/pp.104.046805
- Nam, K. H. and J. Li. 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203-212. https://doi.org/10.1016/S0092-8674(02)00814-0
- Nam, K. H. and J. Li. 2004. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROIDINSENSITIVE 1. Plant Cell 16, 2406-2417. https://doi.org/10.1105/tpc.104.023903
- Oh, M. H., S. D. Clouse, and S. C. Huber. 2009a. Tyrosine phosphorylation in brassinosteroid signaling. Plant Signal. Behav. 4, 1182-1185. https://doi.org/10.4161/psb.4.12.10046
- Oh, M. H., W. K. Ray, S. C. Huber, J. M. Asara, D. A. Gage, and S. D. Clouse. 2000. Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol. 124, 751-766. https://doi.org/10.1104/pp.124.2.751
- Oh, M. H., X. Wang, U. Kota, M. B. Goshe, S. D. Clouse, and S. C. Huber. 2009b. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 658-663. https://doi.org/10.1073/pnas.0810249106
- Perez-Perez, J. M., M. R. Ponce, and J. L. Micol. 2002. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev. Biol. 242, 161-173. https://doi.org/10.1006/dbio.2001.0543
- Postel, S., I. Küfner, C. Beuter, S. Mazzotta, A. Schwedt, A. Borlotti, T. Halter, B. Kemmerling, and T. Nürnberger. 2010. The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur. J. Cell Biol. 89, 169-174. https://doi.org/10.1016/j.ejcb.2009.11.001
- Rahimi, R. A. and E. B. Leof, 2007. TGF-beta signaling: a tale of two responses. J. Biol. Chem. 102, 593-608.
- Russinova, E., J. W. Borst, M. Kwaaitaal, A. Cãno-Delgado, Y. Yin, Chory, J., and S. C. de Vries. 2004. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216-3229. https://doi.org/10.1105/tpc.104.025387
- Ryu, H., K. Kim, H. Cho, J. Park, S. Choe, and I. Hwang. 2007. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762. https://doi.org/10.1105/tpc.107.053728
- Shah, K., E. Russinova, T. W. Jr. Gadella, J. Willemse, and S. C. de Vries. 2002. The Arabidopsis kinase associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev. 16, 1707-1720. https://doi.org/10.1101/gad.220402
- Shan, L., P. He, J. Li, A. Heese, S. C. Peck, T. Nurnberger, G. B. Martin, and J. Sheen. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17-27. https://doi.org/10.1016/j.chom.2008.05.017
- Shiu, S. H., W. M. Karlowski, R. Pan, Y. H. Tzeng, K. F. Mayer, and W. H. Li. 2004. Comparative analysis of the receptor- like kinase family in Arabidopsis and rice. Plant Cell 16, 1220-1234. https://doi.org/10.1105/tpc.020834
- Schlessinger, J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669-672. https://doi.org/10.1016/S0092-8674(02)00966-2
- Schulze, B., T. Mentzel, A. K. Jehle, K. Mueller, S. Beeler, T. Boller, G. Felix, and D. Chinchilla. 2010. Rapid heterodimerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285, 9444-9451. https://doi.org/10.1074/jbc.M109.096842
- Stanevich, V., L. Jiang, K. A. Satyshur, Y. Li, P. D. Jeffrey, Z. Li, P. Menden, M. F. Semmelhack, and Y. Xing. 2011. The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol. Cell 41, 331-342. https://doi.org/10.1016/j.molcel.2010.12.030
- Tang, W., T. W. Kim, J. A. Oses-Prieto, Y. Sun, Z. Deng, S. Zhu, R. Wang, A. L. Burlingame, and Z. Y. Wang. 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560. https://doi.org/10.1126/science.1156973
- Tang, W., M. Yuan, R. Wang, Y. Yang, C. Wang, J. A. Oses-Prieto, T. W. Kim, H. W. Zhou, Z. Deng, S. S. Gampala, J. M. Gendron, E. M. Jonassen, C. Lillo, A. DeLong, A. L. Burlingame, Y. Sun, and Z. Y. Wang. 2011. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol. 13, 124-131. https://doi.org/10.1038/ncb2151
- Vert, G. and J. Chory. 2006. Downstream nuclear events in brassinosteroid signalling. Nature 441, 96-100. https://doi.org/10.1038/nature04681
- Vert, G., J. L. Nemhauser, N. Geldner, F. Hong, and J. Chory. 2005. Molecular mechanisms of steroid hormone signaling in plants. Ann. Rev. Cell Dev. Biol. 21, 177-201. https://doi.org/10.1146/annurev.cellbio.21.090704.151241
- Wang, X. and J. Chory. 2006. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, form the plasma membrane. Science 313, 1118-1122. https://doi.org/10.1126/science.1127593
- Wang, X., M. B. Goshe, E. J. Soderblom, B. S. Phinney, J. A. Kuchar, J. Li, T. Asami, S. Yoshida, S. C. Huber, and S. D. Clouse. 2005a. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSTIVE1 receptor kinase. Plant Cell 17, 1685-1703. https://doi.org/10.1105/tpc.105.031393
- Wang, X., U. Kota, K. He, K. Blackburn, J. Li, M.B. Goshe, S. C. Huber, and S. D. Clouse. 2008. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220-235. https://doi.org/10.1016/j.devcel.2008.06.011
- Wang, X., X. Li, J. Meisenhelder, T. Hunter, S. Yoshida, T. Asami, and J. Chory. 2005b. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell 8, 855-865. https://doi.org/10.1016/j.devcel.2005.05.001
- Wang, Z. Y., T. Nakano, J. Gendron, J. He, M. Chen, D. Vafeados, Y. Yang, S. Fujioka, S. T. Asami, and J. Chory. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505-513. https://doi.org/10.1016/S1534-5807(02)00153-3
- White, R. and M. G. Parker. 1998. Molecular mechanisms of steroid hormone action. Endocrine-Related Cancer 5, 1-14. https://doi.org/10.1677/erc.0.0050001
- Wu, D. and W. Pan. 2010, GSK3: multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161-168. https://doi.org/10.1016/j.tibs.2009.10.002
- Wu, G., X. Wang, X. Li, Y. Kamiya, M. S. Otegui, and J. Chory. 2011. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci. Signal. 4, ra29. https://doi.org/10.1126/scisignal.2001258
- Yang, C. J., C. Zhang, Y. N. Lu, J. Q. Jin, and X. L. Wang. 2011. The mechanism of Brassinosteroids' Action, From signal transduction to plant development. Mol. Plant doi, 10.1093/mp/ssr020.
- Ye, H., L. Li, and Y. Yin. 2011. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathway. J. Integr. Plant Biol. 53, 455-468. https://doi.org/10.1111/j.1744-7909.2011.01046.x
- Yin, Y., D. Vafeados, Y. Tao, T. Yokoda, T. Asami, and J. Chory. 2005. A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249-259. https://doi.org/10.1016/j.cell.2004.11.044
- Yin, Y., Z. Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, and J. Chory. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181-191. https://doi.org/10.1016/S0092-8674(02)00721-3
- Yun, H. S., Y. H. Bae, Y. J. Lee, S. C. Chang, and S. K. Kim. 2009. Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol. Cell 27, 183-190. https://doi.org/10.1007/s10059-009-0023-1
- Zhou, A., H. Wang, J. C. Walker, and J. Li. 2004. BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J. 40, 399-409. https://doi.org/10.1111/j.1365-313X.2004.02214.x