DOI QR코드

DOI QR Code

Polygenic Association of ACE and ACTN3 Polymorphisms with Korean Power Performance

ACE와 ACTN3의 다중유전형질과 근력운동 경기력간의 관계

  • Kim, Chul-Hyun (Exercise Sport Science Institute, Korea National Sport University)
  • 김철현 (한국체육대학교 체육과학연구소)
  • Received : 2012.01.31
  • Accepted : 2012.03.08
  • Published : 2012.03.30

Abstract

This study aimed to examine whether the polygenic profile of ACE ID and ACTN3 R577X polymorphisms is associated with muscle power performance in Korean athletes. For this study, 106 top-class power athletes (top-class group), 158 elite power athletes (elite-class group), and 676 healthy adults (control) aged 18-39 yrs were recruited and their genotypes were analyzed. The top-class group showed higher frequencies of the II genotype and I allele in ACE, as well as higher frequencies of the RR genotype and R allele in ACTN3 (top-class vs. control: 41.4% vs. 32.1% for II genotype, 67.1% vs. 57.7% for I allele, p<0.05; 42.3% vs. 29.0% for RR genotype, 65.3% vs. 54.8% for I allele, p<0.05). In the polygenic profile, the top-class group had significantly higher frequencies of combined-II/ID+RR/RX genotype than the control group (top-class vs. control: 82.9% vs. 66.7% for II/ID+RR/RX, p<0.05), and there was even a sharp increase in total genotype score (TGS) in this group compared to the elite-class and control groups ($66{\pm}0.9$ vs. $58{\pm}1.9$ vs. $56{\pm}2.3$, p<0.05). The combined-II/ID+RR/RX genotype showed the possibility of succussion in the top-class muscle power performance with an odds ratio of 2.3 (CI:1.4-4.1, p<0.05). These results suggested that ACE and ACTN3 need to interact with each other to affect muscle-power performance in an additive form. Furthermore, the polygenic profile of ACE and ACTN3 can predict muscle performance with high success in a homogeneous dominant combined genotype (II/ID+RR/RX). A further study could identify and combine other genes into ACE and ACTN3 for muscle strength.

이 연구는 한국인에서 적용할 수 있는 근력관련 유전적 소인을 ACE 유전자와 ACTN3 유전자를 단일유전자 수준과 다중유전자 수준에서 관계성을 규명하는데 목적이 있다. 연구의 목적을 위해 근력운동종목의 엘리트선수 158명, 국가대표선수 106명, 대조군 676명을 동원하여 ACE ID 다형성과 ACTN3 R577X 다형성 분포를 분석했다. 연구결과, ACE 다형성에서 II 유전형 및 I 대립형질은 유의하게 높은 분포를 가졌고, 반면 DD 유전형 및 I 대립형 질은 유의하게 낮은 분포를 가졌다(Top-Class vs. Control: 41.4% vs. 32.1 for II genotype, 67.1% vs. 57.7% for I allele, p<0.05). ACTN3 다형성에서 RR 유전형 및 R 대립형질은 유의하게 높았고 XX 유전형 및 R 대립형질은 유의하게 낮았다(Top-Class vs. Control: 42.3% vs. 29.0 for RR genotype, 65.3% vs. 54.8% for R allele, p<0.05). 다중유전자 수준에서 근력은 ACE 다형성과 ACTN3 다형성이 조합된 우성조합유전형(II/ID+RR/RX)이 최우수 경기력에서 유의하게 높은 분포를 가졌다(Top-Class vs. Control: 82.9% vs. 66.7% for II/ID+RR/RX, p<0.05). 또한 최우수 경기력을 가진 국가대표는 엘리트와 대조군 보다 유의하게 높은 TGS를 가졌다($66{\pm}0.9$ vs. $58{\pm}1.9$ vs. $56{\pm}2.3$, p<0.05). 이를 근거로 우성조합유전형이 최우수 근력 경기력을 가질 가능성에 대한 승산비는 2.43배(CI:1.45-4.09, p<0.001)였다. 따라서 ACE 다형성과 ACTN3 다형성은 한국인에서 근력과 관계된 유전형으로 확인되었으며, 두 유전자는 상호 조합된 다중유전형에서 근력 경기력에 영향을 줄 것으로 사료된다. 또한 ACE 다형성과 ACTN3 다형성을 조합한 다중유전자는 근력 경기력을 예측할 수 있은 유전적 요인으로 사료되었다.

Keywords

References

  1. Bouchard, C., Malina, R. and Perusse, L. 1997. Genetics of Fitness and Physical Performance. Human Kinetics, Champaign, Illinois.
  2. Brink, M., Price, S. R., Chrast, J., Bailey, J. L., Anwar, A., Mitch, W. E. and Delafontaine, P. 2001. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142, 1489-1496. https://doi.org/10.1210/en.142.4.1489
  3. Brink, M., Wellen, J. and Delafontaine, P. 1996. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J. Clin. Invest. 97, 2509-2516. https://doi.org/10.1172/JCI118698
  4. Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C.M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W. and Dietz, H. C. 2007. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204-210. https://doi.org/10.1038/nm1536
  5. Delmonico, M. J., Kostek, M. C., Doldo, N. A., Hand, B. D., Walsh, S., Conway, J. M., Carignan, C. R., Roth, S. M. and Hurley, B. F. 2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 62, 206-212. https://doi.org/10.1093/gerona/62.2.206
  6. Druzhevskaya, A. M., Ahmetov, I. I., Astratenkova, I. V. and Rogozkin. V. A. 2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol. 103, 631-634. https://doi.org/10.1007/s00421-008-0763-1
  7. Dzau, V. J., Gibbons, G. H. and Pratt, R. E. 1991. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 18, II100-105. https://doi.org/10.1161/01.HYP.18.4_Suppl.II100
  8. Eynon, N., Alves, A. J., Meckel, Y., Yamin, C., Ayalon, M., Sagiv, M. and Sagiv, M. 2010. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/ sprint performance? Metabolism 59, 861-865. https://doi.org/10.1016/j.metabol.2009.10.003
  9. Fagard, R. H. 1997. Impact of different sports and training on cardiac structure and function. Cardiol. Clin. 15, 397-412. https://doi.org/10.1016/S0733-8651(05)70348-9
  10. Frey, N., Richardson, J. A. and Olson, E. N. 2000. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl. Acad. Sci. USA 97, 14632-14637. https://doi.org/10.1073/pnas.260501097
  11. Gomez-Gallego, F., Santiago, C., Gonzalez-Freire, M., Muniesa, C. A., Fernandez Del Valle, M., Perez, M., Foster, C. and Lucia, A. 2009. Endurance performance: genes or gene combinations? Int. J. Sports Med. 30, 66-72. https://doi.org/10.1055/s-2008-1038677
  12. Hagberg, J. M., Rankinen, T., Loos, R. J., Perusse, L., Roth, S. M., Wolfarth, B. and Bouchard, C. 2011. Advances in exercise, fitness, and performance genomics in 2010. Med. Sci. Sports Exerc. 43, 743-752.
  13. Henriksen, E. J. and Jacob, S. 2003. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J. Cell Physiol. 196, 171-179. https://doi.org/10.1002/jcp.10294
  14. Hughes, D. C., Day, S. H., Ahmetov, I. I. and Williams, A. G. 2011. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J. Sports Sci. 29, 1425-1434. https://doi.org/10.1080/02640414.2011.597773
  15. Kasikcioglu, E., Kayserilioglu, A., Ciloglu, F., Akhan, H., Oflaz, H., Yildiz, S. and Peker, I. 2004. Angiotensin-converting enzyme gene polymorphism, left ventricular remodeling, and exercise capacity in strength-trained athletes. Heart Vessels 19, 287-293. https://doi.org/10.1007/s00380-004-0783-7
  16. Kim, C. H., Cho, J. Y., Jeon, J. Y., Koh, Y. G., Kim, Y. M., Kim, H. J., Park, M., Um, H. S. and Kim, C. 2010. ACE DD genotype is unfavorable to Korean short-term muscle power athletes. Int. J. Sports Med. 31, 65-71. https://doi.org/10.1055/s-0029-1239523
  17. Koch, W., Latz, W., Eichinger, M., Ganser, C., Schomig, A. and Kastrati, A. 2005. Genotyping of the angiotensin I-converting enzyme gene insertion/deletion polymorphism by the TaqMan method. Clin. Chem. 51, 1547-1549. https://doi.org/10.1373/clinchem.2005.051656
  18. Koh, T. J. and Tidball, J. G. 1999. Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. J. Physiol. 519 Pt 1, 189-196. https://doi.org/10.1111/j.1469-7793.1999.0189o.x
  19. Longhurst, J. C. and Stebbins, C. L. 1997. The power athlete. Cardiol. Clin. 15, 413-429. https://doi.org/10.1016/S0733-8651(05)70349-0
  20. Macarthur, D. G. and North, K. N. 2005. Genes and human elite athletic performance. Hum. Genet. 116, 331-339. https://doi.org/10.1007/s00439-005-1261-8
  21. MacArthur, D. G. and North, K. N. 2004. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 26, 786-795. https://doi.org/10.1002/bies.20061
  22. MacArthur, D. G., Seto, J. T., Raftery, J. M., Quinlan, K. G., Huttley, G. A., Hook, J. W., Lemckert, F. A., Kee, A. J., Edwards, M. R., Berman, Y., Hardeman, E. C., Gunning, P. W., Easteal, S., Yang, N. and North, K. N. 2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 39, 1261-1265. https://doi.org/10.1038/ng2122
  23. Montgomery, H., Clarkson, P., Barnard, M., Bell, J., Brynes, A., Dollery, C., Hajnal, J., Hemingway, H., Mercer, D., Jarman, P., Marshall, R., Prasad, K., Rayson, M., Saeed, N., Talmud, P., Thomas, L., Jubb, M., World, M. and Humphries, S. 1999. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353, 541-545. https://doi.org/10.1016/S0140-6736(98)07131-1
  24. Mori, S. and Tokuyama, K. 2007. Variation in ACE activity affects myogenic differentiation in C2C12 cells. Biochem. Biophys. Res. Commun. 353, 369-375. https://doi.org/10.1016/j.bbrc.2006.12.056
  25. North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S. and Beggs, A. H. 1999. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21, 353-354. https://doi.org/10.1038/7675
  26. Papadimitriou, I. D., Papadopoulos, C., Kouvatsi, A. and Triantaphyllidis, C. 2008. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med. 29, 352-355. https://doi.org/10.1055/s-2007-965339
  27. Powers, S. K. and Dodd, S. L. 2009. Total Fitness and Wellness. Pearson Benjamin Cummings, San Francisco.
  28. Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K. and Montgomery, H. E. 2011. The ACE gene and human performance: 12 years on. Sports Med. 41, 433-448. https://doi.org/10.2165/11588720-000000000-00000
  29. Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K. and Montgomery, H. E. 2011. Genetic influences in sport and physical performance. Sports Med. 41, 845-859. https://doi.org/10.2165/11593200-000000000-00000
  30. Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P. and Soubrier, F. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343-1346. https://doi.org/10.1172/JCI114844
  31. Rigat, B., Hubert, C., Corvol, P. and Soubrier, F. 1992. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 20, 1433.
  32. Rodriguez-Romo, G., Ruiz, J. R., Santiago, C., Fiuza-Luces, C., Gonzalez-Freire, M., Gomez-Gallego, F., Moran, M. and Lucia, A. 2010. Does the ACE I/D polymorphism, alone or in combination with the ACTN3 R577X polymorphism, influence muscle power phenotypes in young, non-athletic adults? Eur. J. Appl. Physiol. 110, 1099-1106. https://doi.org/10.1007/s00421-010-1608-2
  33. Roth, S. M., Walsh, S., Liu, D., Metter, E. J., Ferrucci, L. and Hurley, B. F. 2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 16, 391-394. https://doi.org/10.1038/sj.ejhg.5201964
  34. Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gomez-Gallego, F., Santiago, C., Yvert, T., Moran, M. and Lucia, A. 2010. Can we identify a power-oriented polygenic profile? J. Appl. Physiol. 108, 561-566. https://doi.org/10.1152/japplphysiol.01242.2009
  35. Ruiz, J. R., Fernandez del Valle, M., Verde, Z., Diez-Vega, I., Santiago, C., Yvert, T., Rodriguez-Romo, G., Gomez-Gallego, F., Molina, J. J. and Lucia, A. 2011. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand. J. Med. Sci. Sports. 21, e34-41. https://doi.org/10.1111/j.1600-0838.2010.01134.x
  36. Russell, S. T., Sanders, P. M. and Tisdale, M .J. 2006. Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett. 231, 290-294. https://doi.org/10.1016/j.canlet.2005.02.007
  37. Sanders, P. M., Russell, S. T. and Tisdale, M. J. 2005. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer 93, 425-434. https://doi.org/10.1038/sj.bjc.6602725
  38. Santiago, C., Rodriguez-Romo, G., Gomez-Gallego, F., Gonzalez-Freire, M., Yvert, T., Verde, Z., Naclerio, F., Altmae, S., Esteve-Lanao, J. R., Ruiz, J. and Lucia, A. 2010. Is there an association between ACTN3 R577X polymorphism and muscle power phenotypes in young, non-athletic adults? Scan. J. Med.Sci. Sports 20, 771-778. https://doi.org/10.1111/j.1600-0838.2009.01017.x
  39. Santiago, C., Ruiz, J. R., Muniesa, C. A., Gonzalez-Freire, M., Gomez-Gallego, F. and Lucia, A. 2010. Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sport of rowing. Scand. J. Med. Sci. Sports 20, e188-94. https://doi.org/10.1111/j.1600-0838.2009.00943.x
  40. Song, Y. H., Li, Y., Du, J., Mitch, N. Rosenthal, and Delafontaine, P. 2005. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J. Clin. Invest. 115, 451-458. https://doi.org/10.1172/JCI22324
  41. Soubrier, F., Wei, L., Hubert, C., Clauser, E., Alhenc-Gelas, F. and Corvol, P. 1993. Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J. Hypertens 11, 599-604. https://doi.org/10.1097/00004872-199306000-00003
  42. Taniwaki, H., Ishimura, E., Matsumoto, N., Emoto, E., Inaba, M. and Nishizawa, Y. 2001. Relations between ACE gene and ecNOS gene polymorphisms and resistive index in type 2 diabetic patients with nephropathy. Diabetes Care 24, 1653-1660. https://doi.org/10.2337/diacare.24.9.1653
  43. Thomis, M. A., Huygens, W., Heuninckx, S., Chagnon, M., Maes, H. H., Claessens, A. L., Vlietinck, R., Bouchard, C. and Beunen, G. P. 2004. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/ deletion genotype in responses of human muscle to strength training. Eur. J. Appl. Physiol. 92, 267-274.
  44. Tsianos, G. I., Evangelou, E., Boot, A., Zillikens, M. C., van Meurs, J. B., Uitterlinden, A. G. and Ioannidis, J. P. 2010. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 108, 567-574.
  45. Walsh, S., Liu, D., Metter, E. J., Ferrucci, L. and Roth, S. M. 2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J. Appl. Physiol. 105, 1486-1491. https://doi.org/10.1152/japplphysiol.90856.2008
  46. Williams, A. G. and Folland, J. P. 2008. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 586, 113-121. https://doi.org/10.1113/jphysiol.2007.141887
  47. Yang, N., Garton, F. and North, K. 2009. Alpha-Actinin-3 and Performance. Med. Sport. Sci. 54, 88-101. https://doi.org/10.1159/000235698
  48. Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S. and North, K. 2003. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 73, 627-631. https://doi.org/10.1086/377590
  49. Yang, N., Schindeler, A., McDonald, M. M., Seto, J. T., Houweling, P. J., Lek, M. Hogarth, M., Morse, A. R., Raftery, J. M. Balasuriya, D., MacArthur, D. G., Berman, Y., Quinlan, K. G., Eisman, J. A., Nguyen, T. V., Center, J. R., Prince, R. L., Wilson, S. G., Zhu, K., Little, D. G. and North, K. N. 2011. alpha-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone 49, 790-798. https://doi.org/10.1016/j.bone.2011.07.009

Cited by

  1. Interaction of ACTN3 gene polymorphism and muscle imbalance effects on kinematic efficiency in combat sports athletes vol.20, pp.2, 2016, https://doi.org/10.20463/jenb.2016.06.20.2.1