DOI QR코드

DOI QR Code

Pseudomonas mandelii의 lipase 유전자 클로닝, 발현 및 정제

Cloning, Expression, and Purification of a Lipase from Psychrotrophic Pseudomonas mandelii

  • 김준성 (대구대학교 의생명과학과) ;
  • 이창우 (대구대학교 의생명과학과)
  • 투고 : 2012.02.08
  • 심사 : 2012.03.13
  • 발행 : 2012.03.30

초록

내냉성 세균인 Pseudomonas mandelii로부터 lipase 유전자(lipT)를 클로닝하고 염기서열을 분석하였다. 열린해독틀 (open reading frame)은 1,686 bp로 구성되어 있고, 562개의 아미노산을 코딩한다. 서열분석 결과 많은 세린 효소에서 발견되는 Gly-X-Ser-X-Gly 모티프가 존재한다(Gly-His-Ser-Leu-Gly). 재조합 LipT 단백질은 대장균에서 주로 inclusion body 형태로 발현되었다. 니켈 친화성 크로마토그라피 방법으로 LipT 단백질을 분리하였으며 소량의 LipT 단백질이 refold 되었다. 이 효소는 p-nitrophenyl butyrate (C4)과 p-nitrophenyl octanoate (C8)에 대해 기질 특이성을 나타내었다.

A gene encoding a lipase, lipT, was cloned from the psychrotrophic bacterium Pseudomonas mandelii and sequenced. An open reading frame of 1,686 bp was found that encodes a polypeptide consisting of 562 amino acid residues. Sequence analysis revealed a Gly-His-Ser-Leu-Gly sequence, which matches the consensus Gly-X-Ser-X-Gly motif conserved among lipolytic enzymes. The recombinant LipT protein was predominantly expressed as inclusion bodies in Escherichia coli and subsequently purified by nickel-chelate affinity chromatography. A small fraction of LipT was refolded, and the subsequent LipT exhibited substrate preferences for p-nitrophenyl butyrate (C4) and p-nitrophenyl octanoate (C8).

키워드

참고문헌

  1. Ahn, J. H., Pan, J. G. and Rhee, J. S. 1999. Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J. Bacteriol. 181, 1847-1852.
  2. Bell, P. J., Sunna, A., Gibbs, M. D., Curach, N. C., Nevalainen, H. and Bergquist, P.L. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148, 2283-2291.
  3. Chahinian, H. and Sarda, L. 2009. Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept. Lett. 16, 1149-1161. https://doi.org/10.2174/092986609789071333
  4. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. and Lim, Y. W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  5. Chung, C. W., You, J., Kim, K., Moon, Y., Kim, H. and Ahn, J. H. 2009. Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD). Microb. Cell Fact. 8, 11.
  6. Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K. and Doctor, B. P. 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366-382. https://doi.org/10.1002/pro.5560020309
  7. Gratia, E., Weekers, F., Margesin, R., D'Amico, S., Thonart, P. and Feller, G. 2009. Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13, 763-768. https://doi.org/10.1007/s00792-009-0264-0
  8. Jaeger, K. E., Dijkstra, B. W. and Reetz, M. T. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  9. Joseph, B., Ramteke, P. W. and Thomas, G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26, 457-470. https://doi.org/10.1016/j.biotechadv.2008.05.003
  10. Kouker, G. and Jaeger, K. E. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211-213.
  11. Lee, H. K., Ahn, M. J., Kwak, S. H., Song, W. H. and Jeong, B. C. 2003. Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB 4. J. Microbiol. 44, 22-27.
  12. Moyes, R. B., Reynolds, J. and Breakwell, D. P. 2009. Differential staining of bacteria: gram stain. Curr. Protoc. Microbiol. Appendix 3, Appendix 3C.
  13. Mulet, M., Lalucat, J. and Garcia-Valdes, E. 2010. DNA sequence- based analysis of the Pseudomonas species. Environ. Microbiol. 12, 1513-1530.
  14. Parra, L. P., Reyes, F., Acevedo, J. P., Salazar, O., Andrews, B. A. and Asenjo, J. A. 2008. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme Microb. Technol. 42, 371-377. https://doi.org/10.1016/j.enzmictec.2007.11.003
  15. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H. and Imanaka, T. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67, 4064-4069. https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  16. Rosenau, F. and Jaeger, K. 2000. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82, 1023-1032. https://doi.org/10.1016/S0300-9084(00)01182-2
  17. Silby, M. W. et al. 2009. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10, R51. https://doi.org/10.1186/gb-2009-10-5-r51
  18. Tutino, M. L., di Prisco, G., Marino, G. and de Pascale, D. 2009. Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept. Lett. 16, 1172-1180. https://doi.org/10.2174/092986609789071270