DOI QR코드

DOI QR Code

오징어과의 Kinesin Superfamily Proteins (KIFs)의 유전자분석 및 계통분석

Sequences and Phylogenic Analysis of Squid New Kinesin Superfamily Proteins (KIFs)

  • 김상진 (인제대학교 의과대학 생화학교실) ;
  • 석대현 (인제대학교 의과대학 신경과학교실)
  • Kim, Sang-Jin (Department of Biochemistry, College of Medicine, Inje University) ;
  • Seog, Dae-Hyun (Department of Neurology, College of Medicine, Inje University)
  • 투고 : 2011.12.26
  • 심사 : 2012.01.17
  • 발행 : 2012.03.30

초록

분자 운동 단백질은 신경세포 내의 세포체에서 특정 목적지까지 소포를 이동시키는데 관여한다. 오징어의 거대 축삭은 간단한 제거조작으로 축삭을 분리 가능하기 때문에 신경세포내 물질이동기전 연구의 좋은 모텔로 활용 가능하다. 이전연구에서 오징어 거대축삭의 소포들은 미세소관을 따라 이동하는 키네신 항체에 의하여 운반됨이 확인되었다. 본 연구는 오징어 뇌에 존재하는 키네신들을 크로닝하고, 분리된 유전자의 분석을 행하기 위하여 키네신 운동 도메인에서 잘 보존된 아미노산 배열에 해당되는 영역에 DNA primer을 이용하여 새로운 6종류의 키네신을 분리하였다. 오징어의 키네신들과 생쥐의 키네신들의 motor 영역의 아미노산분석에서 보존된 영역이 존재하며, Maximum Parsimony (MP) 방법, Neighbor-Joining (NJ) 방법, Minimum Evolution (ME) 방법, 그리고 Maximum likelihood (ML) 방법을 기초로 한 계통분석에서 생쥐의 키네신과 높은 상동성을 나타내었으며, 또한 계통수에서도 높은 상관관계가 확인되었다.

The movement of vesicles from the neuronal cell body to specific destinations requires molecular motors. The squid giant axon represents a powerful model for studies of the axonal transport mechanism because the axoplasm can readily be separated from the sheath by simple extrusion. In a previous study, vesicular movements in the axoplasm of the squid giant axon were inhibited by the kinesin antibody. In the present study, we cloned and sequenced the cDNAs for squid brain KIFs. Amplification of the conserved nucleotide sequences of the motor domain by polymerase chain reaction (PCR) using first-strand cDNAs of the squid optic lobe identified six new KIF proteins. Motif analysis of the motor domains revealed that the squid KIFs are homologous to the consensus sequences of the mouse KIFs. The phylogenetic tree generated by using the maximum parsimony (MP) method, the neighbor-joining (NJ) method, the minimum evolution (ME) method, and the maximum likelihood (ML) method showed that squid KIFs are closest to mouse KIFs. These data prove the phylogenetic relationships between squid KIFs and mouse ones.

키워드

참고문헌

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296. https://doi.org/10.1083/jcb.119.5.1287
  2. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  3. Hall, D. H and E. M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 31, 837-847.
  4. Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  5. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  6. Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275-282.
  7. Lawrence, C. J., R. K. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson, S. A. Endow, L. S. Goldstein, H. V. Goodson, N. Hirokawa, J. Howard, R. L. Malmberg, J. R. McIntosh, H. Miki, T. J. Mitchison, Y. Okada, A. S. Reddy, W. M. Saxton, M. Schliwa, J. M. Scholey, R. D. Vale, C. E. Walczak, and L. Wordeman. 2004. A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22. https://doi.org/10.1083/jcb.200408113
  8. Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011. https://doi.org/10.1073/pnas.111145398
  9. Nakagawa, T., Y. Tanaka, E. Matsuoka, S. Kondo, Y. Okada, Y. Noda, Y. Kanai, and N. Hirokawa. 1997. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc. Natl. Acad. Sci. USA 94, 9654-9659. https://doi.org/10.1073/pnas.94.18.9654
  10. Rzhetsky, A. and M. Nei. 1992. A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9, 945-967.
  11. Saitou, N., and M. Nei. 1987 The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.
  12. Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
  13. Vale, R. D., T. S. Reese, and M. P. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39-50. https://doi.org/10.1016/S0092-8674(85)80099-4
  14. Yang, J. T., W. M. Saxton, R. J. Stewart, E. C. Raff, and L. S. Goldstein. 1990. Evidence that the head of kinesinis sufficient for force generation and motility in vitro. Science 249, 42-47. https://doi.org/10.1126/science.2142332