Journal of the Korean Institute of Illuminating and Electrical Installation Engineers (2012) 26(3): 40~45 http://dx.doi.org/10.5207/JIEIE.2012.26.3.040

논문 26-3-6

광섬유격자 온도센서의 민감도 개선

(Sensitivity Improvement of Fiber Bragg Grating Temperature Sensor)

강한철* · 송민호**

(Han-Chul Kang•Minho Song)

Abstract

We substantially increased the temperature sensitivity of a fiber Bragg grating temperature sensor by gluing it onto a piece of bi-metal strip. The temperature-induced Bragg wavelength shift is increased upto 5 times more than that of the intrinsic FBG sensor by the strain effect from the deflected bi-metal. We showed the feasibility of the proposed sensor by comparing the temperature measuring experiments with those of the intrinsic FBG sensors. Also we measured temperature varying the length of the bi-metal pieces and analyzed the result effect of it.

Key Words : FBG(Fiber Bragg Grating), Temperature Sensor, Temperature, Strain, Bi-Metal

1. 서 론

최근 30년간 우리나라의 1인당 전력소비량은 9배나 증가했으며 대용량화와 노후화에 따라 전력설비의 사 고 또한 매우 급격한 증가추세에 있다[1-2]. 대용량 전력설비의 사고와 그에 따르는 대규모 정전사태는 필연적으로 큰 사회적 비용과 혼란을 야기한다. 때문 에 센서시스템을 이용하여 운전상태에 있는 기기의 이상 징후를 판단하고 원인 및 대책을 제시하여 사고 를 예방할 수 있게 하는 전력설비의 예방진단 기법이 많은 관심을 얻고 있다. 최근 GIS(gas-insulated switchgear)나 몰드변압기 내부의 열화정도를 세라믹

* 주저자 : 전북대학교 전자공학 졸업(석사) ** 교신저자 : 전북대학교 전자공학부 교수 Tel : 063-270-4285, Fax : 063-270-2394 E-mail : msong@jbnu.ac.kr 접수일자 : 2011년 12월 29일 1차심사 : 2012년 1월 13일 심사완료 : 2012년 2월 13일 커플링 센서, 가속도 센서, 초음파 센서, 열화상 카메 라 등으로 검출하는 예방진단 기법들이 상용화된 바 있다[3-7]. 그러나 이러한 센서시스템은 그 적용범위 가 설비의 외부로 한정되고 주요 이상 징후의 하나인 온도변화를 측정하기가 어렵다는 단점을 가진다.

대전류, 고전압 환경에서 운전상태인 전력설비의 내 외부 온도분포를 측정하기 위해서 광섬유격자(fiber Bragg grating)가 효율적인 센서로 관심을 얻고 있다. 광섬유는 전자기과 간섭의 영향을 받지 않는 매우 가 느다란 유리섬유이므로 설비의 내외부에 설치하여 다 중점 온도분포를 효율적으로 측정할 수 있기 때문이 다. 광섬유격자는 온도변화에 따라 반사파장의 크기 가 변하는 특성을 갖는다. 따라서 반사파장의 변화를 정확하게 읽어내는 것이 광섬유격자 센서시스템의 성 능을 좌우한다. 광섬유격자의 반사파장을 읽어내는 복조방법으로 Fabry-Perot 파장가변필터, Edge 필터, 그리고 회절격자와 PD(photo-diode) 어레이를 이용하

Journal of KIIEE, Vol. 26, No. 3, March 2012

는 방법 등이 사용되어 왔다[9-15]. 이러한 복조방법 은 파장의 변화를 정밀하게 읽어낼 수 있으나 대부분 복잡한 신호처리, 고가의 부품과 장비를 필요로 한다. 본 논문에서는 이전 방식에 비해서 보다 단순하면서 저가인 복조방식을 사용할 수 있도록 온도변화에 더 욱 민감하게 반응하는 광섬유격자센서를 만들기 위해 서 바이메탈을 이용하였다. 바이메탈에 부착한 광섬 유격자는 온도에 따른 파장변화와 바이메탈의 휘어짐 에 의한 스트레인 효과가 결합되어 단순한 광섬유격 자 센서에 비하여 5배 향상된 온도민감도를 보였다.

2. 바이메탈과 광섬유 격자

광섬유 격자는 광섬유의 코어 내부에 자외선 레이저 를 이용하여 주기적인 굴절률 변화(격자)를 생성한 것 이다. 격자 간 다수의 경계면에서 광신호의 일부가 반 사 또는 투과하는 과정을 거치면서 다중간섭을 일으 켜 위상조건을 만족시키는 파장만을 반사시킨다. 브 래그 이론에 따르면 위상조건을 만족하여 격자에서 반사되는 브래그 파장(Bragg wavelength)은 다음 식 (1)로 결정된다.

$$\Delta \lambda_B = 2n\Lambda (\left[1 - P_e \right] \Delta \epsilon + \left[\alpha + \zeta \right] \Delta T) \tag{1}$$

위 식에서 △ϵ과 △T는 각각 광섬유격자에 가해진 스트레인과 온도의 변화량이다. P_e, α, ζ는 각각 광섬 유의 광탄성 상수(photo-elastic constant), 열팽창계 수(thermal expansion coefficient), 그리고 열광학계수 (thermo-optic coefficient)이며 스트레인과 온도에 따 른 광섬유의 체적과 굴절률의 변화를 표현하는 값이 다[16]. 식 (1)에 각 계수를 대입하면 광섬유 격자의 반 사파장 변화량은 온도나 스트레인의 변화에 거의 선 형적으로 변화한다. 브래그 중심파장이 1,550[nm]인 경 우 온도의 변화만 가해진다면 대략 100[℃]의 온도변 화에 대해서 약 1[nm]의 브래그 파장변화가 발생한다. 본 논문에서는 바이메탈에 광섬유 격자를 부착하여 광섬유 격자의 온도에 따른 파장 변화를 민감하게 개 선하였다.

바이메탈은 서로 다른 열팽창계수를 가지는 두 가지

조명·전기설비학회논문지 제26권 제3호, 2012년 3월

금속을 붙여 놓은 것이다. 바이메탈에 열이 전달되었 을 때 서로 다른 열팽창계수로 인하여 늘어나는 길이 가 달라 휘어진다.

Fig. 1. Characteristics of bi-metal

그림 1은 온도에 따른 바이메탈의 형태 변화를 나타 낸 그림으로 바이메탈에 작용하는 물리적인 변화를 식으로 표현하면 다음과 같다.

$$D = \frac{K \Delta T L^2}{4t} \tag{2}$$

식 (2)에서 D는 바이메탈의 굴절률이고, t는 두께, K는 바이메탈의 고유상수, △T는 온도의 변화, L은 바이메탈의 길이이다[17].

식에서 보듯이 바이메탈의 두께가 얇으면 굴절률이 크고, 바이메탈의 길이가 짧아야 휘어지는 힘이 크다 [18].

광섬유격자를 바이메탈에 부착하는 경우 바이메탈 의 휘어짐에 따른 스트레인의 효과가 광섬유격자에 더해져서 원래 브래그 파장의 변화량에 비하여 큰 파 장변화가 발생한다. 근본적으로는 온도에 대한 민감 도가 향상된 것은 아니지만 비교적 넓은 범위에서 선 형적인 변화를 보이므로 동일한 효과를 얻었다고 할 수 있다. 이러한 온도민감도의 향상은 보다 낮은 정밀 도를 가지는 파장복조방법으로도 광섬유격자 센서의 출력을 정밀하게 분석할 수 있게 하는 의미를 가진다.

3. 바이메탈의 적용효과

실험에 사용된 바이메탈(유성 EM BL-4)의 온도에

41

따른 굴절률변화를 고려하면 측정 가능한 온도변화량 은 -70~180[℃]이다. 이 바이메탈에 사용된 두 가지 금속은 Ni-Cr-Fe와 Ni-Fe이다. 두께와 폭은 각각 0.15[nm], 33.3[nm], 길이는 250[nm], 바이메탈 고유상수는 14.5±0.7×10⁻⁶/K이고, 탄성계수는 17,000[kgf]이다.

이 값을 식 (3)에 대입하여 온도변화에 따른 바이메 탈의 변형률 D를 구하면 다음과 같다.

그림 2. 온도 변화에 따른 바이메탈의 변형률 변화 Fig. 2. Bi-metal strain vs. temperature

그림 2는 바이메탈에 가해지는 온도변화가 10[℃] 단위로 변화하였다고 가정하였을 때 변형률의 변화를 구한 것이다. 온도의 변화는 바이메탈의 변형률을 선 형적으로 변형시키고 바이메탈에 부착된 광섬유격자 에 역시 선형적인 변형률을 가한다.

그림 3의 A와 B는 각각 100[℃]의 온도변화가 가해 지는 경우에 바이메탈에 부착한 광섬유격자 센서와 일반 광섬유격자 센서의 브래그 파장 변화량을 계산 한 결과이다. 일반 광섬유격자의 경우에는 식 (1)에 따 라 1,550[nm] 중심파장인 경우 대략 1[nm] 정도의 파장 변화를 수반한다. 바이메탈에 부착된 광섬유격자의 경우에는 온도변화와 더불어 바이메탈의 변형률 D의 변화에 따라 스트레인의 효과가 더해지게 되므로 파 장변화의 민감도가 향상될 것을 짐작할 수 있다.

42

그림 3. 광섬유격자 온도센서 출력의 선형성 Fig. 3. Linearity of the FBG temperature sensor output

4. 온도측정 실험

제안한 광섬유격자 센서의 효용성을 실험하기 위하 여 그림 4와 같이 광섬유격자 온도측정 시스템을 구성 하였다. 광원은 중심파장이 1,550[nm]이고 100[nm] 이 상의 파장대역을 갖는 광폭광원을 사용하였다. 광원 에서 방출된 광폭 스펙트럼 중에서 광섬유격자에서 반사된 광신호는 회절격자(volume phase grating)에 서 반사되어 PD 어레이(photo-detector array)에 입사 한다. 회절격자는 입사 광신호의 파장에 따라 다른 방 향으로 반사시켜 주는 역할을 하므로 광신호가 검출 되는 픽셀의 위치에 따라 광신호의 파장을 결정할 수 있다.

Journal of KIIEE, Vol. 26, No. 3, March 2012

그림 7은 두 가지 광섬유격자 센서에 30~85[℃]의 온도변화를 가하면서 반사파장의 변화를 광파장분석 기(optical spectrum analyzer)를 이용하여 얻은 것이 다. 역시 바이메탈에 부착된 광섬유격자가 동일한 온 도변화에 대해서 훨씬 민감하게 반응하는 것을 확인 할 수 있다.

그림 7. 광섬유격자 센서의 반사스펙트럼 변화(30~85[℃]) Fig. 7. Reflection spectra of FBG sensors

그림 8은 일반 광섬유격자와 바이메탈에 부착한 광 섬유격자에 10[℃] 단위의 온도변화를 가하며 파장의 변화를 측정한 것이다. 출력의 형태는 비슷하지만 역 시 파장변화의 크기가 확연하게 차이나는 것을 알 수 있다. 온도변화 경계부근에서의 불규칙한 출력변화는 온도챔버의 특성에 의한 것이다.

그림 5와 6은 각각 일반 광섬유격자와 바이메탈을 부착한 광섬유격자를 온도챔버에 넣은 후 30~75[℃] 의 온도변화를 가해주면서 브래그 파장의 변화를 측 정한 결과이다. 일반 광섬유격자는 32[℃]에서 반사파 장이 1,541.981[nm]이고 72[℃]에서 1542.464[nm]이었 다. 약 40[℃]의 온도변화에 대해서 0.4[nm]의 파장변 화가 발생한 것으로 이론치와 일치하는 것을 알 수 있 다. 바이메탈에 부착된 광섬유격자의 경우에는 32[℃], 72[℃]에서의 반사파장이 각각 1,547.104[nm], 1,549.143 [nm]으로 일반 광섬유격자의 경우에 비해서 약 5배 이 상 파장변화량이 증가하였다.

조명·전기설비학회논문지 제26권 제3호, 2012년 3월

43

(b) 바이메탈 광섬유격자

그림 8. 계단식 온도변화에 대한 광섬유격자 센서의 출력변화

Fig. 8. FBG sensor output vs. step temperature variation

식 (2), (3)에서 바이메탈의 길이에 따라 굴절률과 힘이 달라진다고 하였다. 그 효과를 확인하기 위하여 광섬유 격자가 부착된 바이메탈의 길이를 다르게 하 면서 파장변화를 관측하여 그림 9에 나타내었다. A 는 바이메탈을 부착하지 않은 일반 광섬유격자의 경 우이고 B, C, D는 각각 길이가 250, 200, 150[mm]인 바 이메탈에 부착된 광섬유격자의 반사파장 변화를 보 인다.

그림 9. 바이메탈의 길이에 따른 브래그 파장의 변화 Fig. 9. Bragg wavelength variations whit different length of bi-metal

식 (2)에서 예측한 바와 같이 길이가 증가하면 바이 메탈이 더 크게 굴절되어 반사파장의 변화로 이어지 는 것을 확인할 수 있다. 사용한 바이메탈이 매우 얇 아서 전체 길이에 걸쳐서 균등하게 변형이 이루어지 지 않기 때문에 수식과 동일한 변형의 정도를 확인하 는 것은 한계가 있었다.

4. 결 론

본 논문은 바이메탈을 이용하여 광섬유격자 온도센 서의 온도민감도를 향상시키는 방법을 제안하였다. 실험을 통하여 바이메탈에 부착한 광섬유격자는 기존 일반 광섬유격자에 비해 온도변화에 따른 브래그 반 사파장의 변화량이 약 5배 증가함을 보였다. 센서의 온도민감도 향상은 파장분해능력이 낮은 파장복조 시 스템을 사용하더라도 온도측정의 정밀도를 유지할 수 있게 한다. 따라서 기존의 광섬유격자 온도센서 시스 템에 비하여 보다 단순한 구조의 저가형 센서시스템 을 구성하는 것이 용이하다. 측정 가능한 최대 온도와 측정범위를 실제 전력설비의 이상상태까지 확장할 수 있으므로 대용량 전력설비의 분배형 온도측정에 실용 적으로 적용할 수 있을 것으로 기대된다.

Journal of KIIEE, Vol. 26, No. 3, March 2012

이 논문은 2011년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (No. 2011-0000896) This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0000896)

References

- [1] 지식경제부 "제 5차 전력수습기본계획".
- [2] www.esps.or.kr 전기안전포탈시스템.
- [3] http://www.tge.co.kr TCE태광이엔시.
- [4] 김영석, 구경완, "자외선 코로나 카메라를 이용한 전력설
 비 진단기술개발 동향", 대한전기학회, 전기의세계, 제 60
 권 제 3호, pp. 22-27, 2011.3.
- [5] 최형준, "전기 설비 및 송배전 분야의 부분방전과 코로 나 탐지", 대한전기학회, 대한전기학회 제 37회 하계학술 대회 논문집, pp. 17-18, 2006.7.
- (6) 정종만, 이병성, 김주용, 송일근, 김병숙, "과부하에 따른 배전용 변압기의 절연유 열화검출", 한국조명·전기설비학 회, 한국조명·전기설비학회 2006 춘계학술대회 논문집, pp. 49-53, 2006.7.
- [7] 임진욱, 장형택, 신판석, "Coupling CaPacitor를 이용한 배 전용 몰드변압기 부분방전 계측 모의실험에 관한 연구", 대한전기학회, 2010 대한전기학회 전기기기 및 에너지변 환시스템부문회 춘계학술대회 논문집, pp. 321-323, 2010.4.
- [8] 김광화, "국가기술지도에 있어서의 전력설비 진단기술", 대한전기학회, 전기의 세계, 제52권 제12호, pp. 22-27, 2003.12.
- [9] 김현진, 박형준, 송민호, "InCaAs PD 어레이와 광섬유 격 자를 이용한 준분배형 전력 설비 안전진단 시스템" 한국 조명·전기설비학회, 조명·전기설비학회 논문지, 제 24권 제2호, pp. 86-91, 2010.2.
- [10] H. Lee, H. Park, J. Lee and M. Song, "Accuracy improvement in peak positioning of spectrally distorted FBG sensors by Gaussian curve-fitting," Appl. Opt., vol. 48, no. 12, pp. 2205–2208, 2007.
- [11] H. Park and M. Song, "Linear FBG emperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference", Sensors, vol. 8, no. 10, pp. 6769–6776, 2008.

- [12] H. Park and M. Song, "Fiber Grating Sensor Interrogation Using a Double-Pass Mach Zehnder Interferometer", IEE Photo. Technol. Lett., vol. 20, no. 22, pp. 1833-1835, 2008.
- [13] R. Anderson, H. R Bilger and G. E. Stedman, "Sagnac effect: A century of Earth-rotated interferometers", Am. J. Phys. vol. 62, no. 11, pp. 975–985, 1994.
- [14] R. Wang, Y. Zheng and A. Yao, "Generalized Sagnac Effect", Phys. Rev. Lett., vol. 93, no. 14, 2004.
- [15] Y. L. Lo, "In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing", IEE Photon. Technol. Lett., vol. 10, pp. 1003–1005, 1998.
- [16] A. Othonos and K. Kyriacos, "Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing", boston, Artech House, pp. 95–102, 1999.
- (17) E. Suhir, "Interfacial Stresses in Bimetal Thermostats", Appl. Mech. vol. 58, pp. 56–596, 1989.
- [18] S. Timoshenko, "Analysis of bi-metal thermostats", J. Opt. Sa. Am., vol. 11, pp. 233–255, 1925.

\Diamond 저자소개 \Diamond —

강한철 (姜漢哲)

1984년 1월 21일생. 2009년 전북대학교 전기공학 졸업. 2011년 전북대학교 전자 공학 졸업(석사)

송민호(宋民鎬)

1968년 8월 26일생. 1990년 서울대학교 전기공학과 졸업. 1992년 서울대학교 전기 공학과 졸업(석사). 1997년 서울대학교 전기공학부 졸업(박사). 1997~2000년 펜실베니아주립대학교 박사 후 연구원. 2000년 9월 전북대학교 전자공학부 교수.

45