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Abstract
Sample periodogram is widely known as an inconsistent estimator for true spectral density. We show that it

becomes consistent when the true spectrum at the zero frequency (often known as long-run variance) equals zero.
Asymptotic results for consistency of the periodogram as well as the rate of convergence are formally derived.
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1. Introduction

In an economics or econometrics context, the power spectrum at the zero frequency draws the most
attention, as the magnitude of spectrum at the origin is interpreted as long-run information contained
in the data. Spectral density at the origin (ignoring the constant term) equals to infinite sum of co-
variances of underlying processes, where covariance reflects the relationship between the current and
past information or between the two stationary variables (Andrews, 1991). In that sense, the sum of
all the variance and covariances is often called long-run variance that reflects long-run information
in the time series data (Granger, 1969; Hamilton, 1994; Phillips, 2005). Meanwhile, estimation for
the zero-frequency spectrum or long-run variance estimation has been an important task. Long-run
variance arises in the presence of possible heteroskedasticity and autocorrelation of unknown forms in
diverse econometric models such as linear, nonlinear, GMM and cointegrating estimation. As a robust
estimator to heteroskedasticity and autocorrelation, kernel-based nonparametric estimators have been
widely used and is commonly referred to HAC(heteroskedasticity and autocorrelation consistent) esti-
mator in time series literature (Andrews, 1991; Newey and West, 1994). When the true spectrum at the
origin is assumed to be strictly positive, kernel weighted estimators, equipped with the bandwidths,
achieve consistency (Priestley, 1981).

Periodogram as a spectral density estimator at the origin is defined as unweighted sums of sample
covariances of stationary time series process. Applications of using periodogram have been wide.
Business cycle estimation (among them) remains a popular example of economic application using
periodogram techniques. Estimated power spectrum based on periodogram estimates indicates infor-
mation on business cycles of different frequencies including long-term, mid-term trends and seasonal
effects (Hamilton, 1994). Periodogram has been widely used to analyze long memory time series.
Given the spectral behavior of long-range dependent process, one can use periodogram estimates at
the zero frequency to estimate the long memory parameter (Brockwell and Davis, 1990). Though an
asymptotically unbiased estimator, periodogram is not a consistent estimator for the true spectrum at
any frequency. Inconsistency results follow from the fact that the asymptotic variance of periodogram
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does not decay to zero with the sample size, which is a well known property in the spectral time series
context. For theoretical properties of periodogram, see Priestley (1981) among others.

In this paper, we focus on a degenerate case where the true spectrum at the origin equals to zero.
Degeneracy arises when we mistakenly over-difference the data, which is rendered to be moving aver-
age unit root process. For instance, the first-differenced form of a process whose true statistical order
of integration is zero generates a process with the integration of order for a negative one or moving
average unit root process. The sum of all the variance and covariances of moving average unit root
process becomes zero that corresponds to zero spectrum at the origin. Given this degenerate situation,
we explicitly show that periodogram can be a consistent estimator. Consistency results can be only
obtained in the presence of degeneracy that is otherwise inconsistent in a non-degenerating situation.
Thus, as a possible research area, we can consider testing whether the series is over-differenced or not
through use of a periodogram see Saikkonen and Lukkonen (1993) and Lee (2010).

2. Main Results

We analyze the consistency of periodogram under the null hypothesis that the true long-run variance
becomes zero. The periodogram is given as

I(λ) =
N−1∑

j=1−N

R̂( j) cos( jλ), for − π ≤ λ ≤ π, (2.1)

where R̂( j) = 1/N
∑N

t=| j|+1(Xt − X̄)(Xt− j − X̄), and X̄ = N−1 ∑N
t=1 Xt.

Define a power spectrum

f (λ) = (2π)−1
∞∑

j=−∞
R( j) cos( jλ), (2.2)

where −π ≤ λ ≤ π (Priestley, 1981). It is well known that the periodogram is not a consistent estimator
in the sense that the variance of the periodogram does not decay to zero with the sample size or under
certain conditions, Var(I(λ)) = O(1).

We restrict our attention to the quantity of the spectrum at the zero frequency, as it contains long-
run information in the data. It is often referred to a long-run variance of {Xt} in the econometrics
context given as

f (0) = (2π)−1
∞∑

j=−∞
R( j). (2.3)

As an estimator for (2.2), periodogram at the zero frequency I(0) does not serve as a consistent es-
timator. Inconsistency, however, is present under the non-degenerating case that the true spectrum
f (0) > 0.

To see this formally, we rewrite the periodogram at the zero frequency I(0) as

I(0) = (2π)−1
N−1∑

j=1−N

k
( j

N

)
R̂( j), (2.4)

where k(x) = 1 for |x| ≤ 1, and = 0 otherwise. The weighting function k is a special form of kernel
function with the bandwidth equal to the sample size. Intuitively, one cannot obtain a consistency
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result when the bandwidth equals to the sample size. Our work shows one important exception caused
by the degenerate situation.

In order to prove the consistency, first, we need some conditions for the data generating processes
and for spectral density function f (λ) at λ = 0.

Assumption 1.

(a) Xt, for t = 1, 2, . . . ,N is covariance stationary time series process.

(b)
∑∞

j=−∞ |R( j)| < ∞, and
∑∞

j=−∞ | j|q|R( j)| < ∞, for q ∈ [0,∞), where R( j) = E(Xt −µ)(Xt− j −µ), and
µ = E(Xt).

The smoothness condition in part (b) is required for a higher-order Taylor expansion of the func-
tion f (·) near zero frequency. Moreover, define the qth order generalized spectral derivative,

f (q)(0) = (2π)−1
∞∑

j=−∞
| j|qR( j), for q ∈ [0,∞), (2.5)

where q may not be integer-valued. The generalized spectral derivative f (q)(0) is not necessarily equal
to qth derivative, dq f (λ)/dλq|λ=0. If q is even-numbered, then

f (q)(0) = (−1)
q
2

dq f (λ)
dλq

∣∣∣∣∣
λ=0
. (2.6)

The larger values of q, the more smooth the spectral density function near the origin. When
f (0) = 0, it is necessary to derive higher-order expansions of the estimator near the zero frequency
that requires a large values of q. Our main results need q ≥ 4.

Now, we present the main result.

Theorem 1. Suppose Assumptions 1 hold, Under f (0) = 0,

lim
N→∞

N4Var(I(0)) = Ω,

where Ω = (4π3)[ f (2)(0)]2
∫ ∞
−∞ u4K2(u)du and K is a spectral window of a kernel function.

The results show the consistency of the periodogram when the true spectrum is zero at the origin.
Unlike non-degenerating case, the asymptotic variance decays to zero at the rate of N4. The proof is
in the appendix. As in (2.4), we concentrate on a periodogram with a truncated kernel, i.e., k(z) = 1,
for z ∈ [−1, 1]. The associated spectral window is given as

K(λ) =
1
π

sin(λ)
λ
. (2.7)

As is known in the literature, existing asymptotic results show that the variance of periodogram
does not vanish with the sample size in the non-degenerate case. Fundamentally, different results arise
in the degenerate case. As in the proof, the idea to derive the consistency is simple. Conventional first-
order asymptotics lead to inclusion of f (0) in the asymptotic variance of the periodogram. Thus, it is
necessary to tackle with a higher-order Taylor expansion of the asymptotic variance, and as a result,
convergence rates in Theorem 1 have been found. For reference, the consistency of kernel estimators
in the degenerate case is studied in Lee (2010). The proof of Theorem 1 is in the Appendix.



290 Jin Lee

3. Conclusion

We show the consistency of a sample periodogram estimator when the true long-run variance is zero at
the origin. Asymptotic variance of the periodogram is formally shown to decay with the sample size.
Proposed results are different from the existing results of the inconsistency in sample periodogram
estimation.

Appendix:

Proof: (Proof of Theorem 1) We explicitly derive the limit of Var(I(0)) when f (0) = 0. We make use
of similar techniques in Lee (2010). Under Gaussian assumption, we have (see Priestley, 1981)

Var(I(0)) =
N−1∑

j=1−N

N−1∑
j′=1−N

k
( j

N

)
k
(

j′

N

)
Cov

[
R̂( j), R̂( j′)

]
, (A.1)

where

Cov
[
R̂( j), R̂( j′)

]
= N−1

N−1∑
h=1−N

[
R(h)R

(
h + j′ − j

)
+ R

(
h + j′

)
R(h − j)(1 + o(1))

]
.

Then, we can decompose

Var(I(0)) = (V1N + V2N)(1 + o(1)), (A.2)

where

V1N = N−1
N−1∑

j=1−N

N−1∑
j′=1−N

k
( j

N

)
k
(

j′

N

) N−1∑
h=1−N

R(h)R
(
h + j′ − j

)
,

V2N = N−1
N−1∑

j=1−N

N−1∑
j′=1−N

k
( j

N

)
k
(

j′

N

) N−1∑
h=1−N

R
(
h + j′

)
R(h − j).

By using Fourier and inverse Fourier transformations, the V1N can be written as

N × V1N =

N−1∑
h=1−N

R(h)
N−1∑

j=1−N

k
( j

N

) N−1∑
j′=1−N

∫ π

−π
NK(Nλ)e−i j′λR

(
h + j′ − j

)
dλ

= (2π)3

(2π)−1
N−1∑

h=1−N

R(h)


(2π)−1

N−1∑
j=1−N

k
( j

N

)
×

∫ π

−π
NK(Nλ)(2π)−1

N−1∑
j′=1−N

R(h + j′ − j)e−i(h+ j′− j)λei(h− j)λdλ


which can be further rearranged as

N × V1N = (2π)3

(2π)−1
N−1∑

h=1−N

R(h)


(2π)−1

N−1∑
j=1−N

k
( j

N

) [∫ π

−π
NK(Nλ) f (λ)ei(h− j)dλ

]

= (2π)3
∫ π

−π
NK(Nλ) f (λ)

 f (λ) − (2π)−1
∑
h≥N

R(h)eihλ

 [NK(Nλ)]dλ(1 + op(1))

= (A1N − B1N)(1 + op(1)),
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where

A1N = (2π)3
∫ π

−π
f 2(λ)N2K2(Nλ)dλ, (A.3)

B1N = (2π)3
∫ π

−π
f (λ)N2K2(Nλ)

∑
|h|≥N

R(h)eihλ.

In (A.3), the spectral window of a kernel function is defined as

K(λ) = (2π)−1
∫ ∞

−∞
k(x)e−ixλdx, NK(Nλ) = (2π)−1

∫ ∞

−∞
k
( x

N

)
e−ixλdx,

(by the change of variables, e.g., Priestley (1981, p.447)).
Now, as for A1N , we obtain

A1N = (2π)3
∫ π

−π
f 2(λ)N2K2(Nλ)dλ (A.4)

= (2π)3N
∫ π

−π
f 2

( u
N

)
K2(u)du

= (2π)3N
[(

1
4

)
f 2
(2)(0)

∫ π

−π

( u
N

)4
K2(u)du + O

(
M−6

)]
= 2π3N−3 f 2

(2)(0)
∫ π

−π
u4K2(u)du + O

(
M−5

)
,

where the second line follows from the change of variable techniques, and the third line from Taylor
expansions of the squared f (0).

By similar reasoning, for B1N , we have

B1N ≤ (2π)3
∑
|h|≥N

R(h)
∫ π

−π
f (λ)N2K2(Nλ)dλ (A.5)

≤ (2π)3N−q
∑
|h|≥N

|h|qR(h)
∫ π

−π
f (λ)N2K2(Nλ)dλ.

Again, using Taylor expansions, the integrand term is analyzed as∫ π

−π
f (λ)N2K2(Nλ)dλ = N

∫ π

−π
f
( u

N

)
K2(u)du

= N
[(

1
2

)
f(2)(0)

∫ π

−π

( u
N

)2
K2(u)du

]
+ O

(
M−4

)
.

It follows that
∫ π
−π f (λ)N2K2(Nλ)dλ =O(N−1) and as a result,

B1N = O
(
N−qN−1

)
= O

(
N−(1+q)

)
, (A.6)

which is o(N3), if q > 2.



292 Jin Lee

Similar proofs are applied to V2N term in (A.2), where the dominating term equals to A1N . We
skip this part to save a space. Therefore, we have

N4 [V1N + V2N] =
(
4π3

)
f 2
(2)(0)

∫ π

−π
u4K2(u)du + o(1). (A.7)

which implies the consistency result,

lim
N→∞

Var(I(0)) = O
(
N−4

)
= o(1). (A.8)

Proof of the Theorem 1 is completed. �
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