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Abstract
This article considers the mean time to failure(MTTF) of a dependent parallel system. We study how the

degree of dependency components influences the increase in the mean lifetime for this system. The results are
illustrated by tables and figures.
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1. Introduction

The concepts of dependence did not receive sufficient attention in the statistical literature, since 1966
when the pioneering paper by E.L. Lehmann (1966) has appeared; however it now permeates through-
out our daily life. There are many examples of interdependency in medicine, economic structures and
reliability engineering.

In reliability literature, it is usually assumed that the component lifetimes are independent. How-
ever, components in the same system are used in the same environment (or share the same load,)
and hence the failure of one component influences others (Esary and Proschan, 1970). In many real
multi-component systems, the failure of a component affects the remaining components (Murthy and
Nguyen, 1985), where we have the case of so-called common cause failure and components that
might simultaneously fail. The dependence is usually difficult to describe, even for very similar com-
ponents. From light bulbs in an overhead projector to engines in an airplane, we have dependence,
and it is essential to study the effect of dependence for better reliability design and analysis.

There are many notions of bivariate and multivariate dependence. In literature these models have
been proposed for the study of complex systems. The model proposed by Marshall and Olkin (1967) is
based on the assumption that a two components system is distributed as a bivariate exponential(BVE)
model with the interesting condition that these two components are not independent.

In reliability field an alternative distribution to the exponential, is the Weibull law (Johnson and
Kots, 1970). The Weibull distribution is a versatile family of life distribution in view of its physical
interpretation and its flexibility for empirical fit, and has been extensively applied to the analysis of
life data concerning many types of manufactures components.

As the forms of dependence among the components in a two-components system, Lu and Bhat-
tachrayya (1990) and Lu (1989) initially introduced some new construction of bivariate Weibull(BVW)
distributions as the extension of the Freund (1961) and Marshall and Olkin’s BVE distribution (1967).

The BVW distribution is crucial role that Weibull distribution plays in reliability as well as build-
ing models for various failure or life time distributions.
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In this paper, we drive the mean time to failure(MTTF) for systems with dependent parallel com-
ponents and investigate how the degree of dependency will influence the increase in the mean lifetime.
We assume that two components system follow a the BVW distribution that can be obtained from
BVW model of Marshall-Olkin (1967).

In Section 2, we consider the on the Bivariate Weibull distribution of Marshal and Olkin. In Sec-
tion 3, we drive the MTTF for Marshall-Olkin Bivariate Weibull(MOBVW) distribution. Numerical
results are presented in Section 4 and finally conclude the paper in Section 5.

2. Bivariate Weibull(BVW) Distribution

The BVW model is studied under the assumption that a “fatal shock” could break the system. When
a fatal shock comes, one of the components will fail.

There is extensive literature on the construction of bivariate exponential models, for instance,
Gumbel (1960), Freund (1961), Marschall and Olkin (1967), and Clayton (1978). The models pro-
posed by Freund and Marshall-Olkin have received the most attention in describing the statistical
dependence of components in a 2-component system and in developing statistical inference proce-
dures.

Suppose that the components of a two-component system fail after receiving a shock that is always
fatal. Independent Poisson processes Z1(t; λ1), Z2(t; λ2), Z12(t; λ12) govern the occurrence of shocks.
Events in the process Z1(t; λ1) are shocks to component 1, events in the process Z2(t; λ2) are shocks to
component 2, and events in the process Z12(t; λ12) are shocks to both components. Thus if X1 and X2
denote the two remaining lifetime of the first and second components,

F̄(x1, x2) = P[X1 > x1, X2 > x2]
= P {Z1(x1; λ1) = 0,Z2(x2; λ2) = 0,Z12(max(x1, x2); λ12) = 0}
= exp[−(λ1x1 + λ2x2 + λ12 max(x1, x2))]. (2.1)

For convenience we say that X1 and X2 are BVE(λ1, λ2, λ12) if (2.1) holds. Also we refer to the
distribution of (2.1) as the bivariate exponential, MOBVE(λ1, λ2, λ12) (Mashall and Olkin, 1967).

The obvious way of generating a BVW model is to make a power transformation of the marginals
of the bivariate exponential model studied Marshall and Olkin (1967).

Consider the transformation of (U1,U2) ≡ (X1/α1
1 , X1/α2

2 ). Then

F̄U(u1, u2) = exp
⌊
−

(
λ1uα1

1 + λ2uα2
2 + λ12 max

(
uα1

1 , u
α2
2

))⌋
, (2.2)

where λ1, λ2, λ12 > 0 are the scalar parameters they represent the failure rate, and α1, α2 > 0 are the
shape parameters. We denote a Marshall-Olkin BVW distribution with parameters λ1, λ2, λ12, α1 and
α2 as MOBVW(λ1, λ2, λ12, α1, α2). The two marginal distributions are Weibull distributed with the
following:

F̄Ui (ui) = exp
⌊
− (λi + λ12) uα1

i

⌋
, i = 1, 2. (2.3)

(2.2) can also be independent in case that λ12 is null. The BVW distribution reduced to the BVE
distribution when α1 = α2 = 1. If α1 = α2 = α, then (2.2) distribution reduced a BVW distribution of
Hanagal (1996) because of max(uα1

1 , u
α2
2 ) = {max(u1, u2)}α. There are many types of BVW distribution

(Balakrishnan and Lai, 2009).
The usefulness of a BVW distribution can be visualized in many contexts, such as the times to first

and second failures of a repairable device, the breakdown times of dual generators in a power plant, or
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the survival times of the organs in a two-organ system, (such as lungs or kidneys,) in the human body.
Moeschberger (1974) derived a competing risk model based on the BVW distribution of Marshal and
Olkin. Mino et al. (2003) discussed the applications of a MOBVW in lifespan. Rachev et al. (1995)
considered a MOBVW as a bivariate limiting the distribution of the tumor latency time.

3. MTTF for MOBVW

Let (U1,U2) be Marshall-Olkin BVW distribution with parameters λ1, λ2, λ12 > 0, α1 > 0, α2 > 0 if
its survival function is of the form (2.2). The case λ12 = 0 leads to independence.

Let T = max(U1,U2). As we know, T denotes the system lifetime of a parallel system. The
value of E[T ] for MOBVW distribution with Weibull components can be obtained as follow. The
distribution function is

F̄T (t) = 1 − FT (t, t)
= exp {−(λ1 + λ12)tα1 } + exp {−(λ2 + λ12)tα2 } − exp {−λ1tα1 − λ2tα2 − λ12 max (tα1 , tα2 )} . (3.1)

In case α1 , α2, the value of max (tα1 , tα2 ) is equal to t(max(α1,α2)) if t > 1 or equal to t(min(α1,α2)) if t < 1.
If α1 > α2,

F̄T (t) ={
F̄1(t) = exp {−(λ1+λ12)tα1 } + exp {−(λ2+λ12)tα2 } − exp {−(λ1+λ12)tα1−λ2tα2 } , t > 1,
F̄2(t) = exp {−(λ1+λ12)tα1 } + exp {−(λ2+λ12)tα2 } − exp {−λ1tα1−(λ2+λ12)tα2 } , t < 1. (3.2)

Also when α1 < α2,

F̄T (t) ={
F̄3(t) = exp {−(λ1+λ12)tα1 } + exp {−(λ2+λ12)tα2 } − exp {−λ1tα1−(λ2+λ12)tα2 } , t > 1,
F̄4(t) = exp {−(λ1+λ12)tα1 } + exp {−(λ2+λ12)tα2 } − exp {−(λ1+λ12)tα1−λ2tα2 } , t < 1. (3.3)

Then,

E(T ) =


∫ ∞

1
F̄1(t)dt +

∫ 1

0
F̄2(t)dt, α1 > α2,∫ ∞

1
F̄3(t)dt +

∫ 1

0
F̄4(t)dt, α1 < α2.

(3.4)

But, the integral part of (3.4) has not closed form. In case α1 = α2 = α, situation that frequently we
can observe in applicative fields, an simple distribution is obtained :

F̄T (t) = exp {−(λ1 + λ12)tα} + exp {−(λ2 + λ12)tα} − exp {−(λ1 + λ2 + λ12)tα} . (3.5)

Therefore, the mean time to failure(MTTF) for system with dependent parallel components is

E[T ] =
∫ ∞

0
F̄T (t)dt

= α−1
[
(λ1 + λ12)−

2
α + (λ2 + λ12)−

2
α + (λ1 + λ2 + λ12)−

2
α

]
Γ

(
2
α

)
. (3.6)
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To see the relationships between the components dependency and MTTF, we consider the corre-
lation coefficient between U1 and U2 in (2.2).

ρ(U1,U2) =
Cov(U1,U2)
σU1σU2

. (3.7)

Cov(U1,U2) is obtained by Hoeffiding’s formula as follows:

Cov(U1,U2) =
"

[F(u1, u2) − F(u1)F(u2)] du1du2. (3.8)

After the tedious calculations, we obtain as below:

Cov(U1,U2) =
∫ ∞

0

[
exp{− (λ2 + λ12) s}

αs1− 1
α

(A) +
exp{− (λ2 + λ12) − exp(−λ2s)}

αs1− 1
α

(B)
]

ds, (3.9)

where A =
∫ s

0

{
λ1 exp(−λ1t) − (λ1 + λ12) exp {−((λ1 + λ12)t)}} t1/αdt and B =

∫ ∞
s (λ1 + λ12) exp{−(λ1+

λ12)t}t1/αdt.
The result of (3.9) is calculated under the same condition α1 = α2 = α. But we cannot calculate

the integral parts of A and B.
However, we can the marginal variances of U1 and U2. The results are:

σ2
U1
=

[
Γ

(
1 +

2
α

)
− Γ

(
1 +

1
α

)]2

(λ1 + λ12)−
2
α

and

σ2
U2
=

[
Γ

(
1 +

2
α

)
− Γ

(
1 +

1
α

)]2

(λ2 + λ12)−
2
α .

Because we cannot evaluate (3.9), calculation of (3.7) leaves afterward. As an alternative, we want
to investigate the relationship the dependency parameter λ12 and E[T ] in the next section.

4. Numerical Results

The simulation considers the situation where the components of the system are similar (α1 = α2 = α)
as stated above. The value of α has a marked effect on the failure rate of the Weibull distribution
whether the value of α is less than, equal to, or greater than one.

We investigate the mean times as dependency of components is increasing when the value of α
is less than, equal to, or greater than one, respectively. As a matter of convenience, we assume that
λ1 = λ2 = 1.

The figures in the Table show that E[T ] decreases as dependency parameter (λ12) increases irre-
spective of any aging assumption of components (Figure 1).

5. Conclusion

In this paper, we have considered the MOBVW distribution and drive the MTTF for systems with
dependent parallel components. Using the MTTF, we investigate how the degree of dependency will
influence the increase in the mean lifetime of a system. We know that E[T ] decreases as dependency
parameter (λ12) increases irrespective of any aging assumption of components. In the future, we wish
to study a related research for different BVW distributions.
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Table 1: MTTF and dependence degree

λ12
α = 2 α = 1 α = 1/2

MTTF
0.0 1.250 2.250 24.750
0.1 1.147 1.880 17.009
0.2 1.061 1.596 12.086
0.3 0.987 1.372 8.832
0.4 0.923 1.194 6.609
0.5 0.867 1.049 5.048
0.6 0.817 0.929 3.925
0.7 0.773 0.829 3.099
0.8 0.734 0.745 2.481
0.9 0.699 0.673 2.011
1.0 0.667 0.611 1.648
2.0 0.458 0.258 0.343
3.0 0.350 0.165 0.113
4.0 0.283 0.108 0.048
5.0 0.238 0.076 0.024

Figure 1: Plot of MTTF versus dependence degree
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