DOI QR코드

DOI QR Code

Experimental Analysis of Mass Transfer Capability of Membrane Humidifier for PEMFC

이온 교환막 연료전지용 막 가습기의 물질전달 성능 실험

  • Tak, Hyun-Woo (Dept. of Mechanical Engineering, Chungnam National Univ.) ;
  • Kim, Kyung-Taek (Dept. of Mechanical Engineering, Chungnam National Univ.) ;
  • Im, Seok-Yeon (Korean Intellectual Property Office) ;
  • Yu, Sang-Seok (Dept. of Mechanical Engineering, Chungnam National Univ.)
  • Received : 2011.11.30
  • Accepted : 2012.02.24
  • Published : 2012.02.28

Abstract

The efficiency and life time of the Proton Exchange Membrane fuel cell (PEMFC) system is critically affected by incoming gas with humidity which should be maintained properly at normal operating conditions. Typically, incoming gas of automotive fuel cell is humidified by external humidifier but the characteristics of device is rarely reported. In this study, characteristics of water transfer in the membrane humidifiers have been experimentally investigated for flow rates of gas and for different flow arrangement under steady state condition. At first, capability of mass transfer through the membrane is examined at constant temperature. Then, the temperature distribution effect on the capability of mass transfer is tested over various inlet conditions. In summary, this research presents the mass transfer capability of hydrophilic membrane over various operating conditions.

Keywords

References

  1. D. Picot, R. Metkemeijer, J.J. Bezian and L. Rouveyre, "Impact of the Water Symmetry Factor on Humidification and Cooling Strategies for PEM Fuel Cell Stacks", Journal of Power Sources, Vol. 75, 1998, pp. 251-260. https://doi.org/10.1016/S0378-7753(98)00123-2
  2. D. Staschewski and Z. Q. Mao, "PEMFC Operation with Extraordinarily Low Gas Pressures and Internal Humidification-Conception and Experimantal Prototype Stack", International Journal of Hydrogen Energy, Vol. 24, 1999, pp. 543-548. https://doi.org/10.1016/S0360-3199(98)00102-5
  3. F. N. Buchi and S. Srinivasan, "Operating Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases-Fundamental Aspects", Journal of Electrochemical Society, Vol. 144, No. 8, 1997, pp. 2767-2772. https://doi.org/10.1149/1.1837893
  4. S. Miachon and P. Aldebert, "Internal Hydration $H_2/O_2$ $100cm^2$ Polymer Electrolyte Membrane Fuel Cell", Journal of Power Sources, Vol. 56, 1995, pp. 31-36. https://doi.org/10.1016/0378-7753(95)80005-2
  5. K. H. choi, D. J. Park, Y. W. Rho, Y.T. Kho and T. H. Lee, "A Study of the Internal Humidification of an Integrated PEMFC Stack", Journal of Power Sources, Vol. 74, 1998, p. 146-150. https://doi.org/10.1016/S0378-7753(98)00048-2
  6. T. H. Yang, Y. G. Yoon, C. S. Kim, S. H. Kwak and K. H. Yoon, "A Novel Preparation Method of a Self-humidifying Polymer Electrolyte Membrane", Journal of Power Source, Vol. 106, 2002, pp. 328-332. https://doi.org/10.1016/S0378-7753(01)01025-4
  7. D. Staschewski, "Internal Humidifying of PEM Fuel Cells", International Journal of Hydrogen Energy, Vol. 21, No. 5, 1996, pp. 381-385. https://doi.org/10.1016/0360-3199(95)00087-9
  8. Dongmei Chen, Huei Peng, "A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control", Journal of Dynamic Systems, Measurement, Vol. 127, 2005, pp. 424-432. https://doi.org/10.1115/1.1978910
  9. D. Chu, R. Jiang and C. Walker, "Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stacks Part 1. Evaluation and Simulation of an Air-Breathing PEMFC Stack", Journal of Power Sources, Vol. 83, 1999, pp. 128-133. https://doi.org/10.1016/S0378-7753(99)00285-2
  10. R.A. Dubose, "Enthalpy Wheel Humidifiers", Proceeding of 2002 Fuel Cell Seminar, 2002.
  11. Ha, T. H., Kim, H. S., Min, K. D., "Experimental and Modeling Study of Humidification Performance of Membrane Humidifier for PEM Fuel Cell", J. of KSAE, 2006, pp. 1766-1771.
  12. K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, "A Study of the Internal Humidification of An Integrated PEMFC Stack", J. Power Sources, Vol. 74, 1998, pp. 146-150. https://doi.org/10.1016/S0378-7753(98)00048-2
  13. Barenbrug A.W.T., "Psychrometry and Psychrometric Charts", 3rd Edition, 3rd Edition, Cape Town, S.A.: Cape and Transvaal Printers Ltd., 1974.
  14. S. Motupally, A.J. Becker, J.W. Weidner, "Diffusion of water in Nafion 115 membranes", J.Electrochem. Soc. Vol. 147, No. 9, 2000, p. 3171-3177. https://doi.org/10.1149/1.1393879
  15. T. F. Springer, T. A. Zatwodzinski and S. Gonesfeld, "Polymer Electrolyte Fuel Cell Model", J.Electrochem. Soc., Vol. 138, No. 8, 1991, p. 2234-2342.
  16. Shan Y, Choe SY, "A high dynamic PEM fuel cell model with temperature effect", J. Power sources, Vol. 145, 2005, p. 30-39. https://doi.org/10.1016/j.jpowsour.2004.12.033
  17. Nguyen TV, White RE. "A water and heat management model for proton-exchange-membrane fuel cells", J. Electrochem Soc, Vol. 140, No. 8, 1993, p. 2178-2186. https://doi.org/10.1149/1.2220792
  18. Dongmei Chen, Wei Li and Huei Peng, "An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control", J. Power Sources., Vol. 180, 2008, pp. 461-467. https://doi.org/10.1016/j.jpowsour.2008.02.055