DOI QR코드

DOI QR Code

Antioxidant Activities of Native Gwangyang Rubus coreanus Miq.

광양 재래종 복분자의 항산화 활성

  • Lee, So-Mi (Dept. Food and Nutrition, Chonnam National University) ;
  • You, Yang-Hee (Dept. Food and Nutrition, Chonnam National University) ;
  • Kim, Kyung-Mi (Dept. Biofood Analysis, Korea Bio Polytechnic) ;
  • Park, Jeong-Jin (Dept. Food and Nutrition, Chonnam National University) ;
  • Jeong, Chang-Sic (Dept. Food and Nutrition, Chonnam National University) ;
  • Jhon, Deok-Young (Dept. Food and Nutrition, Chonnam National University) ;
  • Jun, Woo-Jin (Dept. Food and Nutrition, Chonnam National University)
  • 이소미 (전남대학교 식품영양학과) ;
  • 유양희 (전남대학교 식품영양학과) ;
  • 김경미 (한국폴리텍바이오대학 바이오식품분석과) ;
  • 박정진 (전남대학교 식품영양학과) ;
  • 정창식 (전남대학교 식품영양학과) ;
  • 전덕영 (전남대학교 식품영양학과) ;
  • 전우진 (전남대학교 식품영양학과)
  • Received : 2012.01.27
  • Accepted : 2012.02.23
  • Published : 2012.03.31

Abstract

In other to promote the utilization of native Gwangyang Rubus coreanus Miq. as an antioxidant material in functional food, its general composition, free sugars, vitamin C, vitamin E, and anthocyanin content were examined. Free sugars were mainly $2.83{\pm}0.01%$ glucose and $3.49{\pm}0.17%$ fructose. Native Gwangyang Rubus coreanus Miq. included higher vitamin C (0.04 g/100 g) and E (0.04 g/100 g) contents than other Rubus coreanus Miq. Anthocyanin was detected to be 2.41 g/100 g. Two extracts from native Gwangyang Rubus coreanus Miq., hot water extract (RCW) and 80% ethanol extract (RCE), were prepared by reflux, filter, and freeze-dry. The phenolic compound levels of RCW and RCE were 5.99% and 6.20%, respectively. In DPPH- and ABTS-radical scavenging activities, and lipid peroxidation formation inhibitory activity, RCE exhibited relatively high activities when compared to RCW (89.29% vs. 65.04%, 47.65% vs. 30.22%, 23.27% vs. 3.6%, respectively). Based upon these results, it is suggested that RCE from native Gwangyang Rubus coreanus Miq. possesses the antioxidant potentials for radical scavenging and anti-lipid peroxidation activities.

본 연구는 광양 재래종 복분자의 항산화 활성을 평가하였다. 주요 유리당으로는 글루코오스와 과당이 각각 $2.83{\pm}0.01%$, $3.49{\pm}0.17%$로 분석되었다. 복분자의 항산화 활성을 나타내는데 기여하는 비타민 C는 0.04 g/100 g, 비타민 E는 0.01 g/100 g으로 분석되었다. 항산화 기능을 대표하는 광양 재래종 복분자내 안토시아닌 함량은 $2.41{\pm}0.01$ g/100 g으로 분석되었다. 열수추출물과 80% 에탄올추출물의 폴리페놀 함량은 열수추출물 $5.99{\pm}0.15%$, 80% 에탄올추출물 $6.20{\pm}0.41%$로 통계적 유의 차이를 나타내지 않았다. 라디칼 소거 활성을 평가한 결과 동일한 농도에서 DPPH 라디칼 소거활성은 80% 에탄올추출물이 $89.29{\pm}0.68%$, 열수추출물이 $65.04{\pm}3.95%$로 나타났고 ABTS 라디칼 소거활성은 각각 $30.22{\pm}2.91%$, $47.65{\pm}0.45%$로 나타났다. 지질과산화 억제 활성은 80% 에탄올추출물이 $23.27{\pm}0.17%$로 열수추출물 $3.58{\pm}0.21%$보다 높게 나타났다. 안토시아닌을 다량 함유한 광양 재래종 복분자는 이를 함유하는 식품의 가공 및 천연 색소로의 이용이 가능할 것이다. 본 연구의 재래종 복분자의 이화학적 특성은 재래종 복분자 식품의 개발에 활용될 수 있고, 항산화 활성이 높은 80% 에탄올추출물은 건강기능식품의 소재로 활용할 수 있을 것으로 판단되었다.

Keywords

References

  1. Halliwell B, Gutterridge JMC, Aruoma OI. 1987. The deoxyribose method: a simple "test tube" assay for determination of rate constants for reaction of hydroxyl radical. Anal Biochem 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  2. Yoshikawa T, Naito Y, Kondo M. 1990. The role of free radicals in the pathofenesis of human diseases. J Act Oxyg Free Rad 1: 83-102.
  3. Lee MA, Choi HJ, Kang JS, Choi YW, Joo WH. 2008. Antioxidant activities of the solvent extracts from tetragonia tetragonioides. J Life Sci 18: 220-227. https://doi.org/10.5352/JLS.2008.18.2.220
  4. Di Carlo G, Mascolo N, Izzo AA, Capasso F. 1999. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65: 337-353. https://doi.org/10.1016/S0024-3205(99)00120-4
  5. Jeong JS, Sin MK. 1996. Encyclopedia of oriental medical. Young Rim Republ., Seoul, Korea. p 461.
  6. Bae GH. 2000. The medicinal plant of Korea. Kyohasa Publishing Co., Ltd, Seoul, Korea. p 231.
  7. Yang HM, Lim SS, Lee YS, Shin HK, Oh YS, Kim JK. 2007. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Technol 39: 342-347.
  8. Park YK, Choi SH, Kim SH, Han JY, Chung HG. 2007. Changes in antioxidant activity, total phenolics and vitamin C content during fruit ripening in Rubus occidentalis. Korean J Plant Res 20: 461-465.
  9. Cha HS, Youn AR, Park PJ, Choi HR, Kim BS. 2007. Comparison of physiological activities of Rubus coreanus Miquel during maturation. J Korean Soc Food Sci Nutr 36: 683-688. https://doi.org/10.3746/jkfn.2007.36.6.683
  10. Korea Food & Drug Administration. 2008. Korean Food Code. Seoul, Korea. p 10-1-1, 10-1-6, 10-1-7, 10-1-27, 10-1-33.
  11. Lee KW, Kim YJ, Lee HJ, Lee CY. 2003. Cocoa has more phenolic phytochemicals and more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51: 7192-7295.
  12. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  13. Brand-Williams W, Cufelier ME, Berset C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Technologie 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  14. Pellegrini RN, Proteggente A, Pannala A, Yang M, Rice- Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  15. Lin MY, Chang FJ. 2000. Antioxidative effect of intestinal bacteria Bfidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
  16. Cha HS, Youn AR, Park PJ, Choi HR, Kim BS. 2007. Physiochemical characteristics of Rubus coreanus Miquel during maturation. Korean J Food Sci Technol 39: 476-479.
  17. Cho WG, Han SK, Sin JH, Lee JW. 2008. Antioxidant of heating pork and antioxidant activities of Rubus coreanus Miq. extracts. J Korean Soc Food Sci Nutr 37: 820-825. https://doi.org/10.3746/jkfn.2008.37.7.820
  18. Yang YT, Kim MS, Hyun KH, Kim YC, Koh JS. 2008. Chemical constituents and flavonoids in citrus pressed cake. Korean J Food Preserv 15: 94-98.
  19. Datta M, Kaviraj A. 2003. Ascorbic acid supplementation of diet for reduction of deltamethrin induced stress in freshwater catfish Clarias gariepinus. Chemosphere 53: 883-888. https://doi.org/10.1016/S0045-6535(03)00557-5
  20. R.D.A. 2007. Food Composition table . 7th ed. National Rural Living Science Institute, Nongchonjinheungcheong. Korea. p 142-143.
  21. Rhim JW, Kim SJ. 1999. Characteristics and stability of anthocyanin pigment extracted from purple-fleshed potato. Korean J Food Sci Technol 31: 348-355.
  22. Amorini AM, Lazzarino G, Galvano F, Fazzina G, Tavazzi B, Galvano G. 2003. Cyanidin-3-o-beta-glucopyranoside protects myocardium and erythrocytes from oxygen radical mediated damages. Free Radic Res 37: 453-460. https://doi.org/10.1080/1071576021000055253
  23. Rao MV, Paliyath G, Ormrod DP. 1996. Ultraviolet-band ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110: 125-136 https://doi.org/10.1104/pp.110.1.125
  24. Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J Food Sci Technol 26: 310-316.
  25. Cha HS, Park MS, Park KM. 2001. Physiological activities of Rubus coreanus Miquel. Korea J Food Sci Technol 33: 409-415.
  26. You Y, Kim K, Heo H, Lee K, Lee J, Shim S, Jun W. 2006. Stimulatory effects of Pseudosasa japonica leaves on exercise performance. Biosci Biotechnol Biochem 70: 2532- 2535. https://doi.org/10.1271/bbb.60137
  27. Kwon JW, Lee HK, Park HJ, Kwon TO, Choi HR, Song JY. 2011. Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. Korean J Medicinal Crop Sci 19: 325-333. https://doi.org/10.7783/KJMCS.2011.19.5.325
  28. Chen HJ, CT HO. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45: 2374-2378. https://doi.org/10.1021/jf970055t
  29. Yang HY, Steele WF. 1958. Removal of excessive anthocyanin pigment by enzyme. Food Technol 12: 517-519.
  30. Kang MH, Park CG, Cha MS, Seong NS, Chung HK, Lee JB. 2001. Component characteristics of each extract prepared by different extract methods from by-products of Glycyrrhizia uralensis. J Korean Soc Food Sci Nutr 30: 138-142.
  31. Cho YJ, Chun SS, Kwon HJ, Kim JH, Yoon SJ, Lee KH. 2005. Comparison of physiological activities between hotwater and ethanol extracts of Bokbunja (Rubus coreanum F.). J Korean Soc Food Sci Nutr 34: 790-796. https://doi.org/10.3746/jkfn.2005.34.6.790
  32. Ames BN, Shigenage MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative disease of aging. Proc Natl Acad Sci 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  33. Halliwell B, Gutteridge JM. 1990 Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1-85. https://doi.org/10.1016/0076-6879(90)86093-B

Cited by

  1. Stimulatory Effects of Extracts of Inner Bark from Tabebuia avellanedae on Exercise Endurance Capacity vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1937
  2. Physicochemical Characteristics and Biological Activities of Makgeolli Supplemented with the Fruit of Akebia quinata during Fermentation vol.45, pp.5, 2013, https://doi.org/10.9721/KJFST.2013.45.5.619
  3. Quality Characteristics of Black Raspberry Wine added with wild grape by Yeast Strains and Fermentation Conditions vol.16, pp.5, 2015, https://doi.org/10.5762/KAIS.2015.16.5.3361
  4. Antioxidative Activities of Rhus verniciflua Bark from Different Area vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.430
  5. Ethanolic extract from Rubus coreanus enhanced swimming capacity in mice vol.24, pp.6, 2015, https://doi.org/10.1007/s10068-015-0295-5
  6. Variation of Phenolics Contents and Antioxidant Activity of Vaccinium oldhamii Miq. vol.105, pp.2, 2016, https://doi.org/10.14578/jkfs.2016.105.2.208
  7. Comparative Study of Native Flowers for Anti-oxidative Effects in Korea vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.433
  8. Comparative Study on Antioxidant Effects of Extracts from Rubus coreanus and Rubus occidentalis vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1357
  9. Characteristics of Lactic Acid Fermentation of Black Raspberry Juice Using the Lactobacillus plantarum GBL17 Strain vol.31, pp.6, 2015, https://doi.org/10.9724/kfcs.2015.31.6.773
  10. Quality Characteristics of Korean Black Raspberry Bokbunja Wines Produced Using Different Amounts of Water in the Fermentation Process vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.33
  11. Anti-diabetic and Anti-oxidative activities of Extracts from Crataegus pinnatifida vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.270
  12. Estimated Dietary Anthocyanin Intakes and Major Food Sources of Koreans vol.27, pp.4, 2017, https://doi.org/10.17495/easdl.2017.8.27.4.378
  13. Antioxidant Activity and Fermentation Characteristics of Traditional Black Rice Wine vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1693
  14. Evaluation of Antioxidant and Anti-Inflammatory Activities of Ascidian Tunic Carotenoids As a Source of Color Cosmetics vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.36
  15. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanus Miquel) with those of six other berries 2016, https://doi.org/10.1080/19476337.2016.1219390
  16. In vitro Antioxidant and Anti-Inflammatory Activities of Ethanol Extract and Sequential Fractions of Flowers of Prunus persica in LPS-Stimulated RAW 264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1439
  17. Physicochemical Characteristics and Antioxidant Activities of Luffa cylindrica (L.) Roem vol.41, pp.6, 2012, https://doi.org/10.3746/jkfn.2012.41.6.733
  18. Comparison of ellagic acid contents in Korean and Chinese cultivated species of unripe black raspberries vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.549
  19. Antioxidant and anti-inflammatory activities of Opuntia ficus-indica and Opuntia humifusa fruits ethanol extracts vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.586
  20. Physiochemical Characteristics of Panax ginseng C. A Meyer Sprout Cultivated with Nanobubble Water and Antioxidant Activities of Enzymatic Hydrolysates vol.52, pp.4, 2018, https://doi.org/10.14397/jals.2018.52.4.109
  21. 으름열매 추출물의 항산화 활성 및 피부미용 효과 vol.32, pp.3, 2015, https://doi.org/10.12925/jkocs.2015.32.3.439
  22. 복분자 식초를 이용한 장어딥핑소스의 제조의 최적화 연구 vol.22, pp.2, 2016, https://doi.org/10.20878/cshr.2016.22.2.006
  23. 효소처리에 의한 블루베리 음료 생산을 위한 최적추출조건 vol.24, pp.1, 2012, https://doi.org/10.11002/kjfp.2017.24.1.60
  24. 쇠비름 물, 에탄올 추출물의 항산화 및 항염증 활성 vol.25, pp.1, 2012, https://doi.org/10.11002/kjfp.2018.25.1.98
  25. 식물정유 10 종의 라디칼 소거 활성과 주요 활성 성분의 탐색 vol.27, pp.6, 2012, https://doi.org/10.7783/kjmcs.2019.27.6.427
  26. 성숙도에 따른 복분자 열매의 미백 활성 비교 vol.53, pp.2, 2012, https://doi.org/10.4163/jnh.2020.53.2.121
  27. Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract vol.26, pp.4, 2012, https://doi.org/10.15616/bsl.2020.26.4.360
  28. 노각나무 잎과 가지 추출물의 항산화 효과 vol.31, pp.2, 2012, https://doi.org/10.5352/jls.2021.31.2.229