DOI QR코드

DOI QR Code

Antioxidative and Antigenotoxic Activity of White and Yellow Chrysanthemum morifolium Ramat Extracts

백국과 황국 추출물의 항산화활성 및 항유전독성 효과

  • Lee, Hyun-Jung (Dept. of Food and Nutrition, Kyungnam University) ;
  • Kim, Min-Jung (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Jae-Hee (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University)
  • 이현정 (경남대학교 식품영양학과) ;
  • 김민정 (경남대학교 식품영양학과) ;
  • 박재희 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2011.11.28
  • Accepted : 2012.01.07
  • Published : 2012.03.31

Abstract

Chrysanthemum morifolium (C. morifolium) is a perennial plant herb widely distributed in Korea and has been used in a traditional herbal remedy for various diseases. This study was conducted to determine antioxidant activities and antigenotoxic effect in water, acetone, ethanol and methanol extracts from white and yellow C. morifolium flowers (WC and YC). The antioxidants properties were evaluated on the basis of total phenolic content (TPC), DPPH radical-scavenging activity (RSA) and superoxide dismutase (SOD)-like activity. The highest TPC (5.09 g/100 g GAE) showed in YC methanol extract. The DPPH RSA activity of WC and YC water extracts increased as its concentration increase from 50 to 1000 mg/mL, respectively, and the lowest $IC_{50}$ of DPPH RAS showed in YC of $25^{\circ}C$. Also, WC solvent extracts showed significantly higher DPPH RSA than YC solvent extracts. The SOD-like activity of YC water extracts were higher than WC water extracts. And, YC acetone extract and WC methanol extract showed significantly higher SOD-like activity than WC acetone extract and YC methanol extract, respectively. The antigenotoxicity of WC and YC extracts were determined by measuring inhibitory effects of $H_2O_2$ induced DNA damage in human leukocytes using the comet assay, resulting that the ethanol extracts of WC and YC showed a significant antigenotoxic effect against oxidative stress. These results suggest that C. morifolium has significant antioxidant activity and protective effect against oxidative DNA damage.

백국 및 황국의 물 및 용매 추출물의 항산화 효과를 측정하기 위해 총 페놀함량, DPPH radical 소거능과 SOD 유사활성을 측정하였다. 그 결과 총 페놀함량은 국화물추출물에서는 국화종류와 추출온도에 따른 차이가 없었으며, 용매추출물에서는 아세톤<에탄올<메탄올 추출물 순으로 유의적으로 높은 함량을 나타내었다. DPPH radical 소거능은 백국물추출물에서는 추출온도가 높을수록 증가하였으며, 황국물추출물에서는 $25^{\circ}C$에서 가장 높은 DPPH radical 소거능을 나타내었고, 모든 온도에서 황국물추출물이 백국물추출물보다 유의적으로 높은 DPPH radical 소거능을 나타내었다. 용매별 비교에서는 백국과 황국 모두 에탄올추출물에서 가장 높은 DPPH radical 소거능을 나타내었다. 또한 물추출물과 반대로 용매추출물에서는 백국이 황국보다 DPPH radical 소거능이 유의적으로 높은 것으로 나타났다. SOD 유사활성은 물추출물에서는 백국보다 황국에서 높은 활성을 나타내었으며, 용매추출물에서는 아세톤 및 에탄올추출물에서 백국보다 황국에서 유의적으로 높은 SOD 유사활성을 나타낸 반면, 메탄올추출물은 황국보다 백국에서 유의적으로 높은 SOD 유사활성을 나타내었다. 한편 국화용매추출물의 산화적 스트레스에 의한 DNA 손상 보호효과를 보기 위해 국화용매추출물을 50 ${\mu}g/mL$의 농도로 백혈구에 처리한 후 200 ${\mu}M$ $H_2O_2$로 DNA 손상을 유도한 결과, 백국과 황국 용매추출물 모두에서 에탄올추출물의 DNA 손상 억제율이 가장 높은 것으로 나타났다. 백국추출물과 마찬가지로 황국추출물에서도 DNA 손상 보호효과는 DPPH radical 소거능과 같은 경향을 나타내어, DPPH radical의 소거 활성을 증가시키는 물질이 산화적 스트레스에 대한 DNA 손상 보호 효과에도 기여하는 것으로 보인다. 이상의 결과에서 색에 따른 국화의 물 및 용매추출물의 항산화 활성 및 항유전독성을 확인하였으며, 이 결과들은 기능성 제품 개발을 위한 천연물 소재로서 국화의 활용성에 대한 기초자료로 제시될 수 있을 것이다.

Keywords

References

  1. Choi SH, Im SI, Bae JE. 2006. Analysis of aroma components from flower tea of German chamomile and Chrysanthemum boreale Makino. Korean J Food Cookery Sci 22: 768-773.
  2. Park NY, Kwon JH, Kim HK. 1998. Optimization of extraction conditions for ethanol extracts from Chrysanthemum morifolium by response surface methodology. Korean J Food Sci Technol 31: 1189-1196.
  3. Nam SH, Yang MS. 1995. Antibacterial activities of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 269-272.
  4. Nam SH, Yang MS. 1995. Isolation of cytotoxic substances of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 273-277. https://doi.org/10.1021/jf00091a061
  5. Poirier MC, Weston A. 2002. DNA damage, DNA repair, and mutagenesis. In Encyclopedia of cancer . Bertino JR, ed. Academic Press, Boston, MA, USA. p 79-87.
  6. Helim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  7. Branen AL. 1975. Toxicological and biochemistry of butylated hydroxyanisol and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63. https://doi.org/10.1007/BF02901825
  8. Lee JS, Kim HJ, Lee YS. 2003. Anewanti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med 69: 859-861. https://doi.org/10.1055/s-2003-43207
  9. Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M. 2002. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50: 972-975. https://doi.org/10.1248/cpb.50.972
  10. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  11. Labuza TP. 1971. Kinetics of lipid oxidation in foods. CRC Crit Rev Food Technol 2: 335-405.
  12. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci Technol 37: 233-240.
  13. Nice DJ, Robinson DS, Jolden MA. 1995. Characterization of a heat-stable antioxidant co-purified with the superoxide dismutase activity from dried peas. Food Chem 52: 393- 397. https://doi.org/10.1016/0308-8146(95)93288-3
  14. Woo JH, Shin SL, Jeong HS, Lee CH. 2010. Antioxidant effect of extracts obtained from three Chrysanthemum species. J Korean Soc Food Sci Nutr 39: 631-636. https://doi.org/10.3746/jkfn.2010.39.4.631
  15. Woo JH, Shin SL, Lee CH. 2010. Antioxidant effect of 80% ethanol extracts obtained from three Dendranthema species. Korean J Plant Res 23: 47-53.
  16. Woo KS, Yu JS, Hwang IG, Lee YR, Lee CH, Yoon HS, Lee JS, Jeong HS. 2008. Antioxidative activity of volatile compounds in flower of Chrysanthemum indicum, C. morifolium, and C. zawadskii. J Korean Soc Food Sci Nutr 37: 805-809. https://doi.org/10.3746/jkfn.2008.37.6.805
  17. Folin O, Denis W. 1912. On phosphotungasticphosphomolybdic compounds as color reagents. J Biol Chem 12: 239- 249.
  18. Bondent V, Brand-Williams W, Bereset C. 1997. Kinetics and mechanism of antioxidant activity using the DPPH free radical methods. Lebensm Wiss Technol 30: 609-615. https://doi.org/10.1006/fstl.1997.0240
  19. Mensor LL, Menezes FS, Leitao GG, Reis AS, Santos TC, Coube CS, Leitao SG. 2001. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130. https://doi.org/10.1002/ptr.687
  20. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468- 474.
  21. Sing PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0

Cited by

  1. Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.549
  2. Antioxidant and DNA Damage Protective Activities of Freeze-Dried Blue Mussel (Mytilus edulis) vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1801
  3. Antioxidant and Antitumor Activities of Methanolic Extracts from Humulus japonicus vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.357
  4. Physiological Activities of Fermented Garlic Broth during Fermentation vol.19, pp.3, 2012, https://doi.org/10.11002/kjfp.2012.19.3.406
  5. 더덕 추출물과 용매 분획물의 항산화 및 티로시나아제 저해활성 vol.32, pp.6, 2012, https://doi.org/10.9799/ksfan.2019.32.6.611
  6. 매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과 vol.31, pp.2, 2012, https://doi.org/10.5352/jls.2021.31.2.149