DOI QR코드

DOI QR Code

Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway

  • Yeon, Jeong-Tae (Department of Anatomy & Institute for Skeletal Diseases, School of Medicine, Wonkwang University) ;
  • Choi, Sik-Won (Department of Anatomy & Institute for Skeletal Diseases, School of Medicine, Wonkwang University) ;
  • Park, Kie-In (Division of Biological Sciences, College of Natural Science, Chonbuk National University) ;
  • Choi, Min-Kyu (Department of Anatomy & Institute for Skeletal Diseases, School of Medicine, Wonkwang University) ;
  • Kim, Jeong-Joong (Department of Anatomy & Institute for Skeletal Diseases, School of Medicine, Wonkwang University) ;
  • Youn, Byung-Soo (AdipoGen, Inc.) ;
  • Lee, Myeung-Su (Department of Internal Medicine, Division of Rheumatology and Institute of Wonkwang Medical Science, Wonkwang University) ;
  • Oh, Jae-Min (Department of Anatomy & Institute for Skeletal Diseases, School of Medicine, Wonkwang University)
  • Received : 2011.10.19
  • Accepted : 2011.12.05
  • Published : 2012.03.31

Abstract

Receptor activator of NF-${\kappa}B$ ligand (RANKL) triggers the differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) of hematopoietic origin into osteoclasts through the activation of mitogen-activated protein (MAP) kinases and transcription factors. Recently, reactive oxygen species (ROS) and antioxidant enzymes were shown to be closely associated with RANKL-mediated osteoclast differentiation. Although glutaredoxin2 (Glrx2) plays a role in cellular redox homeostasis, its role in RANKL-mediated osteoclastogenesis is unclear. We found that Glrx2 isoform b (Glrx2b) expression is induced during RANKLmediated osteoclastogenesis. Over-expression of Glrx2b strongly enhanced RANKL- mediated osteoclastogenesis. In addition, Glrx2b-transduced BMMs enhanced the expression of key transcription factors c-Fos and NFATc1, but pre-treatment with SB203580, a p38-specific inhibitor, completely blocked this enhancement. Conversely, down-regulation of Glrx2b decreased RANKL- mediated osteoclastogenesis and the expression of c-Fos and NFATc1 proteins. Also, Glrx2b down-regulation attenuated the RANKL-induced activation of p38. Taken together, these results suggest that Glrx2b enhances RANKL-induced osteoclastogenesis via p38 activation.

Keywords

References

  1. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
  2. Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D. and Dougall, W. C. (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J. Biol. Chem. 273, 34120-34127. https://doi.org/10.1074/jbc.273.51.34120
  3. Rao, A., Luo, C. and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707-747. https://doi.org/10.1146/annurev.immunol.15.1.707
  4. Takayanagi, H. (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83, 170-179. https://doi.org/10.1007/s00109-004-0612-6
  5. Takayanagi, H. (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  6. Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95 https://doi.org/10.1152/physrev.00018.2001
  7. Lee, N. K., Choi, Y. G., Baik, J. Y., Han, S. Y., Jeong, D. W., Bae, Y. S., Kim, N. and Lee, S. Y. (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859. https://doi.org/10.1182/blood-2004-09-3662
  8. Fraser, J. H., Helfrich, M. H., Wallace, H. M. and Ralston, S. H. (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19, 223-226. https://doi.org/10.1016/8756-3282(96)00177-9
  9. Kim, H., Kim, I. Y., Lee, S. Y. and Jeong, D. (2006) Bimodal actions of reactive oxygen species in the differentiation and bone-resorbing functions of osteoclasts. FEBS Lett. 580, 5661-5665. https://doi.org/10.1016/j.febslet.2006.09.015
  10. Huh, Y. J., Kim, J. M., Kim, H., Song, H., So, H., Lee, S. Y., Kwon, S. B., Kim, H. J., Kim, H. H., Lee, S. H., Choi, Y., Chung, S. C., Jeong, D. W. and Min, B. M. (2006) Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors. Cell Death Differ. 13, 1138-1146. https://doi.org/10.1038/sj.cdd.4401793
  11. Lean, J., Kirstein, B., Urry, Z., Chambers, T. and Fuller, K. (2004) Thioredoxin-1 mediates osteoclast stimulation by reactive oxygen species. Biochem. Biophys. Res. Commun. 321, 845-850. https://doi.org/10.1016/j.bbrc.2004.07.035
  12. Gallogly, M. M., Starke, D. W., Leonberg, A. K., Ospina, S. M. and Mieyal, J. J. (2008) Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry. 47, 11144-11157. https://doi.org/10.1021/bi800966v
  13. Enoksson, M., Fernandes, A. P., Prast, S., Lillig, C. H., Holmgren, A. and Orrenius, S. (2005) Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem. Biophys. Res. Commun. 327, 774-779. https://doi.org/10.1016/j.bbrc.2004.12.067
  14. Lillig, C. H., Lonn, M. E., Enoksson, M., Fernandes, A. P. and Holmgren, A. (2004) Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. Proc. Natl. Acad. Sci. U.S.A. 101, 13227-13232. https://doi.org/10.1073/pnas.0401896101
  15. Hudemann, C., Lonn, M. E., Godoy, J. R., Zahedi Avval, F., Capani, F., Holmgren, A. and Lillig, C. H. (2009) Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms. Antioxid Redox Signal. 11, 1-14. https://doi.org/10.1089/ars.2008.2068
  16. Theill, L. E., Boyle, W. J. and Penninger, J. M. (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20, 795-823. https://doi.org/10.1146/annurev.immunol.20.100301.064753
  17. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  18. Kim, K., Lee, S. H., Kim, J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  19. Kim, K., Kim, J. H., Lee, J., Jin, H. M., Kook, H., Kim, K. K., Lee, S. Y. and Kim, N. (2007) MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
  20. Huang, H., Chang, E. J., Ryu, J., Lee, Z. H., Lee, Y. and Kim, H. H. (2006) Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem. Biophys. Res. Commun. 351, 99-105. https://doi.org/10.1016/j.bbrc.2006.10.011
  21. Kim, M. S., Yang, Y. M., Son, A., Tian, Y. S., Lee, S. I., Kang, S. W., Muallem, S. and Shin, D. M. (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J. Biol. Chem. 285, 6913-6921. https://doi.org/10.1074/jbc.M109.051557
  22. Sen, C. K. (1998) Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol. 55, 1747-1758. https://doi.org/10.1016/S0006-2952(97)00672-2
  23. Ha, H., Kwak, H. B., Lee, S. W., Jin, H. M., Kim, H. M., Kim, H. H. and Lee, Z. H. (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell. Res. 301,119-127. https://doi.org/10.1016/j.yexcr.2004.07.035

Cited by

  1. Inhibition of osteoclastogenesis by RNA interference targeting RANK vol.13, pp.1, 2012, https://doi.org/10.1186/1471-2474-13-154
  2. Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-35
  3. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis vol.47, pp.8, 2014, https://doi.org/10.5483/BMBRep.2014.47.8.206
  4. Overexpression of prohibitin-1 inhibits RANKL-induced activation of p38-Elk-1-SRE signaling axis blocking MKK6 activity vol.463, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.06.053
  5. Anti-Osteoclastogenic Activity of Praeruptorin A via Inhibition of p38/Akt-c-Fos-NFATc1 Signaling and PLCγ-Independent Ca2+ Oscillation vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0088974
  6. Alpinumisoflavone inhibits osteoclast differentiation and exerts anti-osteoporotic effect in ovariectomized mice vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.059
  7. Effect of Cornus Officinalis on Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL)-induced Osteoclast Differentiation vol.19, pp.2, 2012, https://doi.org/10.11005/jbm.2012.19.2.121