DOI QR코드

DOI QR Code

L자형 이동상수로에서 댐 붕괴파의 수치해석

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed

  • 김대근 (목포대학교 공과대학 토목공학과) ;
  • 황건 (목포대학교 공과대학 토목공학과)
  • 투고 : 2011.11.15
  • 심사 : 2012.01.10
  • 발행 : 2012.03.31

초록

댐 붕괴 직후에 댐 붕괴 근역에서의 댐 붕괴파 및 댐 붕괴파로 인한 하상변동을 추적하기 위하여 RANS를 지배방정식으로 하는 FLOW-3D를 이용한 3차원 수치모의를 수행하였다. 특히 이동상에서의 하상변동과 그 하상변동으로 인한 홍수파의 변동을 고정상에서의 해석결과와 비교하였다. 그 해석 결과를 정리하면 다음과 같다. 첫째, L자형 실험수로에서의 홍수파 해석 및 이동상 실험수로에서의 홍수파와 하상변동 해석 결과는 해당 수리실험을 만족스럽게 재현하고 있다. 둘째, 부유사의 농도는 홍수파의 전면에서 가장 높은 값을 보이며, 하상침식은 흐름이 급변하는 댐 직하류 지점에서 가장 크게 발생한다. 수로의 상류에서 발생하는 부유사로 인해 하류에서는 침식과 퇴적이 번갈아서 발생한다. 홍수파가 도달하는 초기에는 L자형 만곡부의 내측에서 침식이 우세하게 발생하나, 시간이 지나며 침식은 점차 만곡부의 외측으로 이동하는 양상을 보인다. 셋째, L자형 이동상에서의 홍수파는 하상의 침식 및 퇴적으로 인해 고정상에서의 홍수파에 비해 그 전파가 지체되며 홍수위가 크게 상승한다.

We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

키워드

참고문헌

  1. 김대근, 황건(2011). "고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석." 대한토목학회논문집, 대한토목학회, 제31권, 제4B호, pp. 333-341.
  2. 김병현, 한건연, 안기홍(2009). "Riemann 해법을 이용한 댐붕괴파의 전파 해석." 대한토목학회논문집, 대한토목학회, 제29권, 제5B호, pp. 429-439.
  3. 김병현, 한건연, 손아롱(2011). "혼합격자의 적용이 가능한 2차원 유한체적모형의 개발." 한국수자원학회논문집, 한국수자원학회, 제44권, 제2호, pp. 109-123. https://doi.org/10.3741/JKWRA.2011.44.2.109
  4. 김형준, 김정민, 조용식(2009). "분할격자기법을 이용한 실험수조 댐붕괴파의 수치모의." 대한토목학회논문집, 대한토목학회, 제29권, 제2B호, pp. 121-129.
  5. 조용준, 김권수(2008). "제체의 갑작스런 붕괴로 인한 충격파 수치해석-SPH(Smoothed Particle Hydrodynamics)를 중심으로." 대한토목학회논문집, 대한토목학회, 제28권, 제3B호, pp. 261-270.
  6. Alcrudo, F., and Mulet, J. (2007). "Description of the Tous Dam break case study." Journal of Hydraulic Research, IAHR, Vol. 45, Extra Issue, pp. 45-57. https://doi.org/10.1080/00221686.2007.9521832
  7. Bai, Y.C., Xu, D., and Lu, D.Q. (2007). "Numerical simulation of two-dimensional dam-break flows in curved channels." Journal of Hydrodynamics, Vol. 19, No. 6, pp. 726-735. https://doi.org/10.1016/S1001-6058(08)60010-4
  8. Brethour, J., and Burnham, J. (2010). Modeling sediment erosion and deposition with the FLOW-3D sedimentation & scour model. Flow Science Report # FSI-10-TN85.
  9. Capart, H., Spinewine, B., Young, D.L., Zech, Y., Brooks, G.R., Leclerc, M., and Secretan, Y. (2007). "The 1996 Lake Ha! Ha! Ha! breakout flood, Quebec: Test data for geomorphic flood routing mehods." Journal of Hydraulic Research, IAHR, Vol. 45, Extra Issue, pp. 97-109. https://doi.org/10.1080/00221686.2007.9521836
  10. Crespo, A.J.C., Gomez, G.M., and Dalrymple, R.A. (2007). "3D SPH simulation of large waves mitigation with a dike." Journal of Hydraulic Research, IAHR, Vol. 45, No. 5, pp. 631-642. https://doi.org/10.1080/00221686.2007.9521799
  11. Flow Science (2007). Flow-3D(Theory Manual), Los Alamos, NM.
  12. Fraccarollo, L., and Toro, E.F. (1995). "Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems." Journal of Hydraulic Research, IAHR, Vol. 33, No. 6, pp. 843-864. https://doi.org/10.1080/00221689509498555
  13. Frazao, S.S. (2007). "Experiments of dam-break wave over a triangular bottom sill." Journal of Hydraulic Research, IAHR, Vol. 45, Extra Issue, pp. 19-26. https://doi.org/10.1080/00221686.2007.9521829
  14. Frazao, S.S., and Zech, Y. (1999). "Effects of a sharp bend on dam-break flow." Proceedins 28th Congress of IAHR, Graz, Austria, pp. 1-20.
  15. Frazao, S.S., and Zech, Y. (2002). "Dam break in channels with $90^{\circ}$ bend." Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 11, pp. 956-968. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(956)
  16. Frazao, S.S., and Zech, Y. (2007). "Experimental study of dam-break flow against an isolated obstacle." Journal of Hydraulic Research, IAHR, Vol. 45, Extra Issue, pp. 27-36. https://doi.org/10.1080/00221686.2007.9521830
  17. Hervouet, J.M., and Petitjean, A. (1999). "Malpasset dam-break revisited with tow-dimensional computations." Journal of Hydraulic Research, IAHR, Vol. 37, No. 6, pp. 27-36.
  18. Lauber, G., and Hager, W.H. (1998a). "Experiments to dambreak wave: Horizontal channel." Journal of Hydraulic Research, IAHR, Vol. 36, No. 3, pp. 291-307. https://doi.org/10.1080/00221689809498620
  19. Lauber, G., and Hager, W.H. (1998b). "Experiments to dambreak wave: Sloping channel." Journal of Hydraulic Research, IAHR, Vol. 36, No. 5, pp. 761-773. https://doi.org/10.1080/00221689809498601
  20. Leal, J.G.A.B., Ferreira, R.M.L., and Cardoso, A.H. (2002). "Dam-break waves on movable bed." River Flow 2002: Proceedings of the International Conference on Fluvial Hydraulics, pp. 981-990.
  21. Miller, S., and Chaudhry, M.H. (1989). "Dam break flows in curved channel." Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 11, pp. 1465-1478. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1465)
  22. Spinewine, B., and Zech, Y. (2007). "Small-scale laboratory dam-break waves on movable beds." Journal of Hydraulic Research, IAHR, Vol. 45, Extra Issue, pp. 73-86. https://doi.org/10.1080/00221686.2007.9521834
  23. Vasquez, J.A., and Roncal, J.J. (2009). "Testing RIVER 2D and FLOW-3D for sudden dam-break flow simulations." CDA 2009 Annual Conference, CDA, Whistler, BC, Canada, pp. 44-55.
  24. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G. (1992). "Development of turbulence models for shear flows by a double expansion technique." Physics of Fluids, Vol. 4, No. 7, pp. 1510-1520. https://doi.org/10.1063/1.858424
  25. Zhou, J.G., Causon, D.M., Mingham, C.G., and Ingram, D.M. (2004). "Numerical prediction of dam-break flows in general geometries with complex bed topography." Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 4, pp. 332-340. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(332)