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GENERALIZED SCHWARZ LEMMAS

FOR MEROMORPHIC FUNCTIONS

Xiaojun Huang and Ling Chen

Abstract. In this paper, we prove an analog of the generalized Schwarz
lemma for meromorphic functions. Our results improve the classical gen-
eralized Schwarz lemma.

1. Introduction

The classical Schwarz lemma is one of the simplest results in all of the
complex function theory. But there is hardly any result that has been quite
so influential. Thanks in part to Lars Ahlfors’ geometrization of the proof (he
showed that the Schwarz lemma can be interpreted in terms of curvature), the
Schwarz lemma has assumed a central and powerful role in complex geometry.
A very simple and widely used general form of this lemma is as follows:

Theorem A (Generalized Schwarz Lemma). Let k be a positive integer and
f(z) be an analytic function defined on the unit disk D. If |f(z)| ≤ 1 for z ∈ D
and f(0) = f ′(0) = · · · = f (k−1)(0) = 0, then

(a) 1
k!
|f (k)(0)| ≤ 1;

(b) |f(z)| ≤ |z|k for z ∈ D.
Moreover, the equality |f (k)(0)| = k! or the equality |f(z)| = |z|k at a single
point z ̸= 0 holds if and only if f(z) = czk with |c| = 1.

Remark 1. The proof of the generalized Schwarz lemma please refer to [2].

Obviously, there is a natural problem for meromorphic functions: Can we get
an analog of the generalized Schwarz lemma for the meromorphic functions? In
this paper, we give an affirmative answer to the above question giving a proof
using winding numbers and homotopy, as in [4] where the case k = 1 was done.
Furthermore, our method gives a new proof of the original generalized Schwarz
lemma.
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Notational conventions. Through the paper, D will denote the unit disk
{z : |z| < 1}. For a meromorphic function f(z), we denote by n(r, f) the
number of poles of f in |z| < r, counted according to multiplicity. By this
notation, the number of zeros of f in |z| < r is thus given by n(r, 1/f). We
denote by Wind(γ, a) the winding number of the cycle γ around the point a.

Now, we state our results as follows.

Theorem 1. Let k be a positive integer. Suppose that f(z) is meromorphic on
D and satisfies the following conditions:

(1) f(0) = f ′(0) = · · · = f (k−1)(0) = 0;
(2) there exists a real number 0 < r0 < 1 such that |f(z)| ≤ 1 for z ∈ {z :

r0 < |z| < 1};
(3) the function g(z) = zk − (k!f(z))/f (k)(0) satisfies n(1, 1/g)−n(1, g) ̸=

k, provided that f (k)(0) ̸= 0.

Then
1

k!
|f (k)(0)| ≤ 1.

Moreover, the equality |f (k)(0)| = k! holds if and only if f(z) = czk with |c| = 1.

Remark 2. Note that 0 is a zero of g(z) with multiplicity at least k+1 when the
function f(z) is holomorphic and f (k)(0) ̸= 0 in Theorem 1. Thus the assump-
tion (3) of Theorem 1 automatically holds if the function f(z) is holomorphic.
Therefore, the conclusion (a) of Theorem A is a corollary of Theorem 1.

Theorem 2. Let k be a positive integer. Let f(z) be a meromorphic function
on D and ω be a point, not a pole of f , in D. Suppose that f(z) satisfies the
following conditions:

(1) f(0) = f ′(0) = · · · = f (k−1)(0) = 0;
(2) there exists a real number 0 < r0 < 1 such that |f(z)| ≤ 1 for z ∈ {z :

r0 < |z| < 1};
(3) the function gω(z) = zk−(ωkf(z))/f(ω) satisfies n(1, 1/gω)−n(1, gω) ̸=

k, provided that f(ω) ̸= 0.

Then
|f(ω)| ≤ |ω|k.

Moreover, the equality |f(ω)| = |ω|k holds at a non-zero point ω if and only if
f(z) = czk with |c| = 1.

Remark 3. We note that 0 is a zero of gω(z) with multiplicity at least k + 1
when the function f(z) is holomorphic and f(ω) ̸= 0 in Theorem 2. Thus
the assumption (3) of Theorem 2 automatically holds if the function f(z) is
holomorphic. Therefore, the conclusion (b) of Theorem A is a corollary of
Theorem 2.

Example 1. Define the meromorphic function

f(z) =
6zk

(8z − 1)
on D.
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It is clear that f(0) = f ′(0) = · · · = f (k−1)(0) = 0 and |f(z)| ≤ 1 for z ∈ {z :
7/8 < |z| < 1}. By a simple computation, we get

g(z) = zk − k!f(z)

f (k)(0)
=

8zk+1

8z − 1
.

Then n(1, 1/g) − n(1, g) = k. But 1
k! |f

(k)(0)| = 6 > 1. So, this example
illustrates that the assumption (3) in Theorem 1 is necessary.

Example 2. Define the meromorphic function

f(z) =
zk

20(z − 1/2)2
on D.

It is obvious that f(0) = f ′(0) = · · · = f (k−1)(0) = 0 and |f(z)| ≤ 1 for
z ∈ {z : 3/4 < |z| < 1}. At the same time, it is not difficult to find out

g(z) = zk − k!f(z)

f (k)(0)
=

zk+1(z − 1)

(z − 1/2)2
.

Noting n(1, 1/g) = k + 1, then n(1, 1/g) − n(1, g) = k − 1 ̸= k. Clearly, we
have 1

k! |f
(k)(0)| = 1/5 < 1. Therefore, this example shows that there exist the

meromorphic functions satisfying all assumptions of Theorem 1.

Example 3. Define the meromorphic function

f(z) =
zk

16(z − 1/2)2
on D.

It is clear that f(0) = f ′(0) = · · · = f (k−1)(0) = 0 and |f(z)| ≤ 1 for z ∈ {z :
3/4 < |z| < 1}. For the point ω = 3/8, we obtain

gω(z) =
zk(z − 5/8)(z − 3/8)

(z − 1/2)2
.

Then n(1, 1/gω) − n(1, gω) = k. But
∣∣f( 38 )∣∣ > ∣∣ 3

8

∣∣k. This fact shows that the

assumption (3) of Theorem 2 is necessary. Furthermore, for the point ω = −1
4 ,

we have

gω(z) =
zk(z − 5/4)(z + 1/4)

(z − 1/2)2
.

Then n(1, 1/gω)− n(1, gω) = k − 1 ̸= k. Simultaneously, it is easy to see∣∣∣∣f(−1

4
)

∣∣∣∣ ≤ ∣∣∣∣−1

4

∣∣∣∣k .
Hence, this fact shows that there exist the meromorphic functions satisfying
all assumptions of Theorem 2.
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2. Proof of the theorems

Proof of Theorem 1. Let λ = 1
k!
f (k)(0).

Step 1. We first show that |λ| ≤ 1. If not, then |λ| > 1. Thus we define
the function

gλ(z) = zk − f(z)

λ
.

If gλ(z) ≡ 0 in D, then f(z) ≡ λzk. Since |λ| > 1, we know that

|f(z)| > 1 for (1/|λ|) 1
k < |z| < 1,

which contradicts the assumption (2) of Theorem 1. Hence, gλ(z) ̸≡ 0 in D.
Step 1.1. We prove that there exists a positive real number r satisfying:

(1) gλ(z) has no zeros and poles on |z| = r;

(2) max{(1/|λ|) 1
k , r0} < r < 1;

(3) n(r, 1/gλ)− n(r, gλ) ̸= k.

It is clear that the set of poles of gλ(z) is the same as the set of poles of
f(z) in D. Therefore, by assumption (2) of Theorem 1, we know that the total
number of poles of gλ(z) in D is finite and

(2.1) n(ρ, gλ) = n(r0, gλ) for r0 < ρ < 1.

If the total number of the zeros of gλ(z) in D is finite, then we can choose a
real number r such that all zeros and poles of gλ(z) in D are contained in |z| < r

and max{(1/|λ|) 1
k , r0} < r < 1. It is clear that gλ(z) has no zeros and poles on

|z| = r. Since n(r, 1/gλ) = n(1, 1/gλ) and n(r, gλ) = n(1, gλ), combining the
assumption (3) of Theorem 1, it follows that n(r, 1/gλ)− n(r, gλ) ̸= k.

If the total number of the zeros of gλ(z) in D is infinite, then, combing
(3.1), we can choose a real number r such that n(r, 1/gλ) > n(r, gλ) + k,

max{(1/|λ|) 1
k , r0} < r < 1 and gλ(z) has no zeros and poles on |z| = r.

Hence, the conclusion of Step 1.1 is proved.
Step 1.2. We show that n(r, 1/gλ)− n(r, gλ) = k.
Let γ and Γ be two Jordan curves in D with parametric equations being

γ(t) = re2πit, t ∈ [0, 1];

Γ(t) = rkei2πkt, t ∈ [0, 1].

It is clear that

(2.2) Wind(Γ, 0) = k.

From the definition of winding number, it is easy to see that

Wind(gλ ◦ γ, 0) = 1

2πi

∫
γ

g′λ(z)

gλ(z)
dz.
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Since gλ(z) has no zeros and poles on γ,

Wind(gλ ◦ γ, 0) = 1

2πi

∫
γ

g′λ(z)

gλ(z)
dz

=
∑
j

Wind(γ, aj)−
∑
l

Wind(γ, bl)

= n(r, 1/gλ)− n(r, gλ),

(2.3)

where aj and bl are the zeroes and poles of gλ(z), repeated according to mul-
tiplicity, cf., [1, p. 152, Th. 18].

In the following, we will show that Wind(gλ ◦ γ, 0) = Wind(Γ, 0).
Consider the homotopy

h(t, s) = γk(t)− s
f(γ(t))

λ

= Γ(t)− s
f(γ(t))

λ
for s ∈ [0, 1], t ∈ [0, 1],

from the curve Γ to the curve gλ ◦ γ. Note that rk > 1/|λ|, |f(γ(t))| ≤ 1 and
|Γ(t)| = rk for t ∈ [0, 1]. Then

|h(t, s)| ≥ rk − |f(γ(t))|
|λ|

≥ rk − 1

|λ|
> 0.

So the two closed curves Γ and gλ ◦ γ are homotopic in C − {0}. Then, we
deduce that

Wind(gλ ◦ γ, 0) = Wind(Γ, 0) = k.

Thus, according to (2.3), we get

n(r, 1/gλ)− n(r, gλ) = k.

This fact contradicts n(r, 1/gλ) − n(r, gλ) ̸= k. Therefore, this contradiction
shows that |λ| ≤ 1, that is, 1

k! |f
(k)(0)| ≤ 1.

Step 2. We prove that f(z) ≡ λzk if |λ| = 1. Recall that

gλ(z) = zk − f(z)

λ
,

where |λ| = 1.
Suppose that gλ(z) ̸≡ 0 in D.
With entirely similar arguments as Step 1.1, we can find a positive real

number ρ > r0 satisfying:

(2.4) n(σ, 1/gλ)− n(σ, gλ) ̸= k for 1 > σ > ρ.

Since gλ(z) ̸≡ 0 in D, it follows that there exists a positive number r such
that ρ < r < 1 and gλ has no zeros and poles on |z| = r. So, we have

η = inf
|z|=r

|gc(z)| > 0.
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Choose a complex number λ′ such that 1/r > |λ′| > 1 and |λ′ − λ| < η. Then

|gλ′(z)− gλ(z)| = |f(z)| |λ− λ′|
|λ| · |λ′|

≤ |λ− λ′| < η ≤ |gλ(z)| on |z| = r.

By the general form of Rouche’s theorem, we obtain that

n(r, 1/gc′)− n(r, gc′) = n(r, 1/gc)− n(r, gc).

Combining (2.4), we have n(r, 1/gλ′)− n(r, gλ′) ̸= k.
Now, with entirely similar arguments as Step 1.2, we can get that

n(r, 1/gλ′)− n(r, gλ′) = k.

This equation contradicts n(r, 1/gλ′) − n(r, gλ′) ̸= k. Therefore, this contra-
diction shows that gλ(z) ≡ 0 in D, that is, f(z) ≡ λzk where |λ| = 1. Hence,
Theorem 1 is proved. □
Proof of Theorem 2. If ω = 0, the inequality |f(ω)| ≤ |ω|k automatically holds
as f(0) = 0. So, without loss the generality, we may assume that ω ̸= 0.

Let

λ =
f(ω)

ωk
and gλ(z) = zk − f(z)

λ
.

Now, with entirely similar arguments as the proof of Theorem 1, we can prove
Theorem 2. Here we omit the details, which are left to the readers. □
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