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SOME HOMOGENEITY CLASSES OF POSETS OF HEIGHT 2

GAB-BYunG CHAE, MINSEOK CHEONG, AND SANG-MoOK Kim

ABSTRACT. In this paper, we find the inclusion relation among four cate-
gories of posets, i.e., ideal-homogeneous, tower-homogeneous, quasi-com-
plement-preserved, and complement-preserved posets.

1. Introduction

It is a well-known problem to give classifications of those which satisfy certain
homogeneity conditions in graph theory [3], and a characterization of count-
able partially ordered sets was given in [5]. It is very natural to ask whether
every isomorphism between finite substructures can be extendable to an au-
tomorphism of the whole structure. A few decades later, some results on the
homogeneity for finite partially ordered sets are also given by G. Behrendt [1],
and they make resume to investigate the relationship between the homogeneity
conditions for finite partially ordered sets.

Suppose (P, <) is a finite partially ordered set (simply called a finite poset)
with a partial order relation <, which is simply denoted by P for convenience.
If @ C P, we may refer to @ also as a poset, having in mind the subposet
(Q, <) whose order relation is the restriction of (P, <)’s.

A chain is said to be maximal if it is not a proper subposet of any other chain.
A maximum chain is a maximal chain with the maximum cardinality. The
height of a poset P, denoted by ht(P), is the number of points in a maximum
chain, and the length is one less than the height, denoted by [(P). An element
x € P is maximal if there is no element y(# x) € P such that z < y. For
an element x € P, the height ht(z) is the maximal cardinality of chains in
{y € P| y < z}. For a positive integer n, let H,(P,<) = {x € P | ht(z) =n}.

We say that x is covered by y in P (also, y covers x in P and (z,y) is a
covering pair in P) when x < y and there is no z € P with & # z # y such
that < z < y. For a covering pair (x,y), y is called a up-cover of z, and x is
called a down-cover of y. Let UCov(z) be the set of all up-covers of x. Define
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updeg(z) as |[UCov(z)|. Similarly, let DCov(x) be the set of all down-covers of
x, and downdeg(xz) = |DCouv(x)|.

For a poset P and z € P, let Ulz] = {y € P |y > = in P} and D[z]
{y € P |y < zin P}. Also, we let U[A] = UgeaU[z] and D[A] = UzeaDlx
for a subposet A of P. Let U(z) = {y € P |y > z in P} \ {z} and D(z)
{y € P|y<ain P}\ {z}. Also, we let U(A) = U,caU(z) \ A and D(A) =
UzeaD(x) \ A for a subposet A of P.

The dual of a poset P, denoted by P? = (P, <)%, is defined as (P, <?) where
z <yin P if and only if y <% = in P%. A poset P is self-dual if P is isomorphic
to P

A map f: (P,<) = (Q,<') of posets is order-preserving if x < y implies
flz) < f(y) for all z,y € P. If © < y implies f(y) < f(x), the map is
order-reversing. Two posets (P, <) and (Q,<’) are isomorphic if there exists
an order-preserving bijection f : (P, <) — (Q, <’) such that f~! is also order-
preserving. A bijection f : (P, <) — (P, <) is an automorphism if f and f~! are
order-preserving, and an antiautomorphism if f and f~! are order-reversing.
We denote the set of all automorphisms of a poset P by Aut(P).

An ideal I of P is a non-empty subset of P such that if x < y for x € P
and y € I, then x € I. A poset P is ideal-homogeneous, provided that, for any
ideals I and J with I 2, J, there exists an automorphism ¢* € Aut P such
that o*|r = 0. A poset P is weakly ideal-homogeneous, provided that for each
I of P and o € Aut(I), there is o* € Aut(P) such that o*|; = 0.

A subset S of P is called a tower in P if for every x € S there exists a
maximal chain C in {y € P | y < z} such that C C S. We call a poset P tower-
homogeneous if for two isomorphic towers S; and So with an isomorphism
o : 81 — Sg, there exists an automorphism S in Aut(P) such that o(z) = 5(z)
for all z € S;. We say that (P, <) is weakly tower-homogeneous if for each
tower S and each automorphism o € Aut(S), there exists an automorphism 3
in Aut(P) such that o(z) = 8(z) for all € S. Throughout this paper, let N,
Z, and [n] denote the set of all natural numbers, the set of all integers, and
{z € Z|1 <z < n}, respectively.

The following two theorems, due to Behrendt [1], characterizes the (weakly)
ideal-homogeneous posets and (weakly) tower-homogeneous posets of height 2,
respectively.

Theorem 1.1 ([1]). Let (P, <) be a finite partially ordered set of height-two.
The followings are equivalent.
(i) (P, <) is ideal-homogeneous.
(i1) (P, <) is weakly ideal-homogeneous.
(iii) There exist a positive integer n and a function f : [n] — N such that
there exists i € [n] with f(i) # 0 and (P, <) is isomorphic to (X, <)
where

X =[nu{(S,i) | 0#SC[n],1<i<f(IS])}
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P P*

F1Gure 1. P is QCPP and ideal-homogeneous poset which is
neither tower-homogeneous nor CPP

and fork € [n], 0 £S5 Cn], 1 <i< f(|S]), let
k< (S,i) ifand only if ke S.

For integers p, ¢ > 1, let C(p, q) be the linear sum Ry @& Ry of two disjoint
antichains R; = {a1,...,a,} and Ry = {b1,...,b,}, i.e., all a;’s in Ry are
incomparable, and all b;’s in Ry are also incomparable, and a; < b; for all a; €
Ry and b; € Ry. For integers n, k > 1, let A(n, k) be the disjoint sum of n copies
of C(1,k). For n > 3 let B(n) be the poset consisting of 1-element subsets and
(n — 1)-element subsets of {1,...,n}, ordered by set-theoretic inclusion.

Theorem 1.2 ([1]). Let (P, <) be a finite height-two ordered set. The following
are equivalent.

(i) (P, <) is tower-homogeneous.
(ii) (P, <) is weakly tower-homogeneous.
(iii) (P, <) s isomorphic to C(p,q) for some p,q > 1, or to A(n,k) for
some n,k > 1 or to B(n) forn > 3.

Definition 1 ([4]). Let I and J be ideals of a poset P. Then P is called a
quasi-complement-preserved poset (QCPP) if I = J in P, then I¢ = J¢ in P9,

It looks like that, for two isomorphic ideals I and J of P%, if P is a QCPP,
then I° = J¢ in P. However, in Figure 1, I = {2} and J = {4} are isomorphic
in P%, but I¢ and J¢ are not isomorphic in P while P is a QCPP. Hence we can
define a type of poset which is a QCPP satisfying the converse of Definition 1,
as follows.

Definition 2. A poset P is a complement-preserved poset (CPP) if P and P?
are QCPPs.

In this paper, we find the relationship among these four homogeneity classes
of posets of height 2.
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2. Ideals in a quasi-complement-preserved poset
Lemma 2.1. For a poset P, if I is an ideal in P, then I¢ is an ideal in P?.

Proof. Let x € I¢ and y < x in P%. Then z < y in P. Since = € I°¢, we have
x ¢ I.Since z < yin P, we have y ¢ I, i.e., y € I°. Therefore I€ is an ideal in
P4, O

Lemma 2.2. If P is a CPP and x, y € H1(P, <), then updegz = updegy.

Proof. Suppose I = {z} and J = {y} for any elements =, y in Hy(P,<). Then
I = J. Since P is a CPP, we have I° = J°. Let m be the number of edges
in P when, temporarily, we regard P as a graph, and m’ be the number of
edges in I¢ and m” be the number of edges in J¢. Since I = {z}, we have
updegz = degx = m — m’ and, similarly, m — m” = degy = updegy. Since
I° = J¢ we have

Therefore
updeg x = updegy
for every z, y in Hy(P,<). O

Consequently, we have the following result from the duality of a CPP.
Corollary 2.3. If P is a CPP and =, y are mazimal elements, then
downdeg(x) = downdeg(y).

Lemma 2.4. Let P be a CPP. Suppose I and J are ideals in P such that
I=,J. Then

Z updegz = Z updeg o ().

zE€H, (P,<)NI o(z)eH, (P,<)NJ
Proof. Tt is clear by Lemma 2.2. 0

Let I be an ideal of P and T'(I) = {x € P | DCov(z) = I'}. In fact, if P is a
poset of height 2, we have T'(I) is a subset of Ha(P, <). The following lemma
shows T'(I) is not empty if I is an ideal in Hy (P, <).

Lemma 2.5. Let P be a CPP of height 2 and downdeg(z) = r for all x €
Hy(P,<). Let I be an ideal in Hy(P,<) with |I| = r. Then T(I) is not an
empty set, i.e., [T(I)] > 1.

Proof. Since downdeg(z) = r for any = € Ha(P, <), there is an r-element ideal
Iy in Hy (P, <) such that Iy = DCouv(x). On the other hand, assume that there
exists an r-element ideal I in H; (P, <) such that T(I) = 0. Then I§ and I¢
are not isomorphic in P?, while Iy and I are isomorphic in P. Hence, this
contradicts the hypothesis that P is a CPP. Therefore, T'(I) # (. O



SOME HOMOGENEITY CLASSES OF POSETS OF HEIGHT 2 377

Proposition 2.6. Let P be a CPP of height 2 and downdeg(z) = r for all
x € Hy(P,<). Suppose that I and J are ideals in Hy(P,<) with |I| = |J| =r.
Then |T'(I)| = |T(J)|.

Proof. Suppose that I and J are ideals in H;(P,<) with |[I| = |J| = r. Let
Sy = D(I) and Sy = D(J) in P%. Then clearly, T(I) € S; and T(J) C Ss.
Since I and J are isomorphic in a CPP P, we have I¢ 22 J¢ in P%. Since I¢ has
no element of I, I¢ has exactly |T'(I)| isolated elements from the definition of
T(I). Similarly, J¢ has exactly |T'(J)| isolated elements. Therefore, |T'(I)| =

O

T(J)].

In Proposition 2.6, we emphasize the existence of an invariant s which is
the number of elements of Hy(P, <), each of which covers every element of any
r-element ideal where r = downdeg(z) for = € Ha(P, <).

3. Relationship among four categories of posets

An ideal of a poset P is clearly a tower of P. It is clear that if a poset P
is tower-homogeneous, then it is ideal-homogeneous. Therefore, we have the
following proposition.

Proposition 3.1. Fvery tower-homogeneous poset is ideal-homogeneous.

However, the converse is not always true (See Figure 1). As a matter of
fact, in Figure 1, the towers I = {1,2} and J = {3,4} are isomorphic with
isomorphism o where «(1) = 3 and «(2) = 4. It can be easily seen that
« cannot be extended to any automorphism of P. Hence, P is not tower-
homogeneous. Moreover, P? is not a QCPP as stated previously.

According to Theorem 1.2, a tower-homogeneous poset of height 2 is one of
the following cases:

(i) C(p,q) for some p,q > 1.
(ii) A(n,k) for some n,k > 1.
(iii) B(n) for n > 3.
Then, from the definitions of these posets, C(p,q) and B(n) are CPPs, and
A(1, k) is a CPP. However, A(n, k) is not a CPP but a QCPP for n > 2. That
is, the converse of Theorem 1.2 is not true.

Theorem 3.2. Every CPP of height 2 is tower-homogeneous.

Proof. For a given CPP P of height 2 and = € Hy(P,<), let downdeg(x)
= r and |H{(P,<)| = m > r. For every r-element subset I of Hi(P, <), by
Proposition 2.6, there is the fixed number |T'(I)|(denoted by t)> 1 of elements
of Ho(P, <) which cover all elements of I. In order to show the result, we only
have to check the following five cases; (1) r=m, (2) r=m —1and t =1, (3)
r=1,4)1<r<m-—1,and (5) r=m—1and ¢t > 1.

(1) If r = m, then P is isomorphic to C(r,t).

(2) If r=m —1 and t = 1, then P is isomorphic to B(m).
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(3) If r = 1, then P is isomorphic to A (m,t). If m > 2, then A(m,t) is not
a CPP so that we exclude all other possibilities for m > 2.

(4) Suppose 1 < r < m — 1. Let g € H1(P,<) and u € Hz(P,<) with
xo < u. Since r < m — 1, there exist distinct y,z € H;(P, <) incomparable
with u. Let S; be the set of elements of H; (P, <) covered by u. Since r >
1, there exists x; € S7 \ {zo}. Then there exists v € Hs(P,<) such that
D(v) = (S1\ {zo}) U {y}, say Sa, in P. And there exists w € Hy(P, <)
such that D(w) = (S1 \ {zo,2z1}) U {y, 2}, say Ss, in P. Let I = {u,v} and
J = {u,w}, then I = J in P%. We count the decreasing numbers of updeg(z)
for x € Hi(P,<) in I¢ and J¢, respectively.

The up-degrees of g and y in I¢ are one less than those of x and y in P, and
the up-degree of a € S1 NS5 in 1€ is reduced by two. The up-degrees of others
are not changed in I°. On the other hand, the up-degrees of xg, x1, y, z in J¢
are one less than those of xg, 1, y, z in P, and the up-degree of b € S; N S5
in J¢ is reduced by two in J¢. The up-degrees of others are not changed in J¢.
Note that |S1 N Ss] =7 —1 and |S; N S3| = — 2. That is, in I¢, there are
r — 1 elements in H; (P, <) whose up-degrees are reduced by two; however, in
J¢, there are r — 2 elements in H; (P, <) whose up-degrees are reduced by two,
which means that I¢ 2 J¢ in P. Therefore, P is not a CPP.

(5) Suppose r = m — 1 and ¢t > 1 and m > 3. Then there exist distinct
Zo,Y, 2 € H1(P,<). Note that P is a CPP. From Lemma 2.2 and its corollary,
there exist u,v,w € Hy(P, <) such that D(u) = D(v) = H1(P,<) \ {y} and
D(w) = H1(P,<)\ {z}. Now let I = {u,v} and J = {u,w} then I = J in P%.
The up-degree of a € H; (P, <) is reduced by two in I¢, and that of y is not
changed in 7°. On the other hand, the up-degree of b € D(u)\ D(w) is reduced
by one, and that of ¢ € D(u) N D(w) is reduced by two, and that of d € D(w) \
D(u) is reduced by one. Note that D(u)\ D(w) = {z}, D(w)\ D(u) = {y} and
H,(P,<) = D(u)U{y} = D(w)U{z}. This implies that |D(u)ND(w)| =r—1.
Consequently, in ¢, there are r elements in H;(P, <) whose up-degrees are
reduced by two; however, in J¢, there are r — 1 elements whose up-degrees are
reduced by two, which implies that I¢ 2 J¢ in P. Therefore, P is not a CPP.

Through the cases, from (1) to (5), if P is a CPP of height 2, then P is one
of A(1,t), B(m), and C(m,t). Therefore, P is a tower-homogeneous poset. [

If a poset P is ideal-homogeneous, then, for ideals I and J with I =, J,
there exists an automorphism ¢* € AutP such that o*|; = 0. The restriction
of o* to I° induces an isomorphism from I¢ to J°. Therefore P is a QCPP as
stated:

Proposition 3.3. Every ideal-homogeneous poset of height 2 is a QCPP.
For the converse of Proposition 3.3, we give a conjecture as follows.
Conjecture 3.4. Fvery QCPP of height 2 is ideal-homogeneous.

The results are summarized in Figure 2.
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FIGURE 2. A relationship between the homogeneity classes of
posets of height 2
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