SOME HOMOGENEITY CLASSES OF POSETS OF HEIGHT 2

GAB-BYUNG CHAE, MINSEOK CHEONG, AND SANG-MOK KIM

ABSTRACT. In this paper, we find the inclusion relation among four categories of posets, i.e., ideal-homogeneous, tower-homogeneous, quasi-complement-preserved, and complement-preserved posets.

1. Introduction

It is a well-known problem to give classifications of those which satisfy certain homogeneity conditions in graph theory [3], and a characterization of countable partially ordered sets was given in [5]. It is very natural to ask whether every isomorphism between finite substructures can be extendable to an automorphism of the whole structure. A few decades later, some results on the homogeneity for finite partially ordered sets are also given by G. Behrendt [1], and they make resume to investigate the relationship between the homogeneity conditions for finite partially ordered sets.

Suppose (P, \leq) is a finite partially ordered set (simply called a finite poset) with a partial order relation \leq , which is simply denoted by P for convenience. If $Q \subset P$, we may refer to Q also as a poset, having in mind the subposet (Q, \leq) whose order relation is the restriction of (P, \leq) 's.

A chain is said to be maximal if it is not a proper subposet of any other chain. A maximum chain is a maximal chain with the maximum cardinality. The *height* of a poset P, denoted by ht(P), is the number of points in a maximum chain, and the *length* is one less than the height, denoted by l(P). An element $x \in P$ is maximal if there is no element $y(\neq x) \in P$ such that $x \leq y$. For an element $x \in P$, the height ht(x) is the maximal cardinality of chains in $\{y \in P \mid y \leq x\}$. For a positive integer n, let $H_n(P, \leq) = \{x \in P \mid ht(x) = n\}$.

We say that x is covered by y in P (also, y covers x in P and (x, y) is a covering pair in P) when $x \leq y$ and there is no $z \in P$ with $x \neq z \neq y$ such that $x \leq z \leq y$. For a covering pair (x, y), y is called a *up-cover* of x, and x is called a *down-cover* of y. Let UCov(x) be the set of all up-covers of x. Define

O2012 The Korean Mathematical Society

Received November 8, 2010; Revised August 5, 2011.

 $^{2010\} Mathematics\ Subject\ Classification.\ 06A07.$

Key words and phrases. ideal-homogeneous, tower-homogeneous, quasi-complement-preserved poset, complement-preserved poset.

The first author was supported by Wonkwang University in 2011.

updeg(x) as |UCov(x)|. Similarly, let DCov(x) be the set of all down-covers of x, and downdeg(x) = |DCov(x)|.

For a poset P and $x \in P$, let $U[x] = \{y \in P \mid y \ge x \text{ in } P\}$ and $D[x] = \{y \in P \mid y \le x \text{ in } P\}$. Also, we let $U[A] = \bigcup_{x \in A} U[x]$ and $D[A] = \bigcup_{x \in A} D[x]$ for a subposet A of P. Let $U(x) = \{y \in P \mid y \ge x \text{ in } P\} \setminus \{x\}$ and $D(x) = \{y \in P \mid y \le x \text{ in } P\} \setminus \{x\}$. Also, we let $U(A) = \bigcup_{x \in A} U(x) \setminus A$ and $D(A) = \bigcup_{x \in A} D(x) \setminus A$ for a subposet A of P.

The dual of a poset P, denoted by $P^d = (P, \leq)^d$, is defined as (P, \leq^d) where $x \leq y$ in P if and only if $y \leq^d x$ in P^d . A poset P is self-dual if P is isomorphic to P^d .

A map $f: (P, \leq) \to (Q, \leq')$ of posets is *order-preserving* if $x \leq y$ implies $f(x) \leq' f(y)$ for all $x, y \in P$. If $x \leq y$ implies $f(y) \leq' f(x)$, the map is *order-reversing*. Two posets (P, \leq) and (Q, \leq') are *isomorphic* if there exists an order-preserving bijection $f: (P, \leq) \to (Q, \leq')$ such that f^{-1} is also order-preserving. A bijection $f: (P, \leq) \to (P, \leq)$ is an automorphism if f and f^{-1} are order-preserving, and an antiautomorphism if f and f^{-1} are order-reversing. We denote the set of all automorphisms of a poset P by Aut(P).

An *ideal* I of P is a non-empty subset of P such that if $x \leq y$ for $x \in P$ and $y \in I$, then $x \in I$. A poset P is *ideal-homogeneous*, provided that, for any ideals I and J with $I \cong_{\sigma} J$, there exists an automorphism $\sigma^* \in \operatorname{Aut} P$ such that $\sigma^*|_I = \sigma$. A poset P is *weakly ideal-homogeneous*, provided that for each I of P and $\sigma \in \operatorname{Aut}(I)$, there is $\sigma^* \in \operatorname{Aut}(P)$ such that $\sigma^*|_I = \sigma$.

A subset S of P is called a *tower* in P if for every $x \in S$ there exists a maximal chain C in $\{y \in P \mid y \leq x\}$ such that $C \subset S$. We call a poset P towerhomogeneous if for two isomorphic towers S_1 and S_2 with an isomorphism $\sigma : S_1 \to S_2$, there exists an automorphism β in Aut(P) such that $\sigma(x) = \beta(x)$ for all $x \in S_1$. We say that (P, \leq) is weakly tower-homogeneous if for each tower S and each automorphism $\sigma \in Aut(S)$, there exists an automorphism β in Aut(P) such that $\sigma(x) = \beta(x)$ for all $x \in S$. Throughout this paper, let \mathbb{N} , \mathbb{Z} , and [n] denote the set of all natural numbers, the set of all integers, and $\{x \in \mathbb{Z} \mid 1 \leq x \leq n\}$, respectively.

The following two theorems, due to Behrendt [1], characterizes the (weakly) ideal-homogeneous posets and (weakly) tower-homogeneous posets of height 2, respectively.

Theorem 1.1 ([1]). Let (P, \leq) be a finite partially ordered set of height-two. The followings are equivalent.

- (i) (P, \leq) is ideal-homogeneous.
- (ii) (P, \leq) is weakly ideal-homogeneous.
- (iii) There exist a positive integer n and a function $f : [n] \to \mathbb{N}$ such that there exists $i \in [n]$ with $f(i) \neq 0$ and (P, \leq) is isomorphic to (X, \leq) where

$$X = [n] \cup \{(S,i) \mid \emptyset \neq S \subseteq [n], 1 \le i \le f(|S|)\}$$

FIGURE 1. P is QCPP and ideal-homogeneous poset which is neither tower-homogeneous nor CPP

and for
$$k \in [n]$$
, $\emptyset \neq S \subseteq [n]$, $1 \leq i \leq f(|S|)$, let
 $k \leq (S, i)$ if and only if $k \in S$.

For integers $p, q \ge 1$, let C(p,q) be the linear sum $R_1 \oplus R_2$ of two disjoint antichains $R_1 = \{a_1, \ldots, a_p\}$ and $R_2 = \{b_1, \ldots, b_q\}$, i.e., all a_i 's in R_1 are incomparable, and all b_j 's in R_2 are also incomparable, and $a_i \le b_j$ for all $a_i \in$ R_1 and $b_j \in R_2$. For integers n, k > 1, let A(n, k) be the disjoint sum of n copies of C(1, k). For $n \ge 3$ let B(n) be the poset consisting of 1-element subsets and (n-1)-element subsets of $\{1, \ldots, n\}$, ordered by set-theoretic inclusion.

Theorem 1.2 ([1]). Let (P, \leq) be a finite height-two ordered set. The following are equivalent.

- (i) (P, \leq) is tower-homogeneous.
- (ii) (P, \leq) is weakly tower-homogeneous.
- (iii) (P, \leq) is isomorphic to C(p,q) for some $p,q \geq 1$, or to A(n,k) for some $n, k \geq 1$ or to B(n) for $n \geq 3$.

Definition 1 ([4]). Let *I* and *J* be ideals of a poset *P*. Then *P* is called a *quasi-complement-preserved poset* (*QCPP*) if $I \cong J$ in *P*, then $I^c \cong J^c$ in P^d .

It looks like that, for two isomorphic ideals I and J of P^d , if P is a QCPP, then $I^c \cong J^c$ in P. However, in Figure 1, $I = \{2\}$ and $J = \{4\}$ are isomorphic in P^d , but I^c and J^c are not isomorphic in P while P is a QCPP. Hence we can define a type of poset which is a QCPP satisfying the converse of Definition 1, as follows.

Definition 2. A poset P is a complement-preserved poset (CPP) if P and P^d are QCPPs.

In this paper, we find the relationship among these four homogeneity classes of posets of height 2.

2. Ideals in a quasi-complement-preserved poset

Lemma 2.1. For a poset P, if I is an ideal in P, then I^c is an ideal in P^d .

Proof. Let $x \in I^c$ and $y \leq x$ in P^d . Then $x \leq y$ in P. Since $x \in I^c$, we have $x \notin I$. Since $x \leq y$ in P, we have $y \notin I$, i.e., $y \in I^c$. Therefore I^c is an ideal in P^d .

Lemma 2.2. If P is a CPP and $x, y \in H_1(P, \leq)$, then updeg x = updeg y.

Proof. Suppose $I = \{x\}$ and $J = \{y\}$ for any elements x, y in $H_1(P, \leq)$. Then $I \cong J$. Since P is a CPP, we have $I^c \cong J^c$. Let m be the number of edges in P when, temporarily, we regard P as a graph, and m' be the number of edges in I^c and m'' be the number of edges in J^c . Since $I = \{x\}$, we have updeg $x = \deg x = m - m'$ and, similarly, $m - m'' = \deg y = \operatorname{updeg} y$. Since $I^c \cong J^c$, we have

$$m - m' = m - m''.$$

Therefore

$$\operatorname{updeg} x = \operatorname{updeg} y$$

for every x, y in $H_1(P, \leq)$.

Consequently, we have the following result from the duality of a CPP.

Corollary 2.3. If P is a CPP and x, y are maximal elements, then

$$\operatorname{downdeg}(x) = \operatorname{downdeg}(y).$$

Lemma 2.4. Let P be a CPP. Suppose I and J are ideals in P such that $I \cong_{\sigma} J$. Then

$$\sum_{x \in H_1(P, \leqslant) \cap I} \operatorname{updeg} x = \sum_{\sigma(x) \in H_1(P, \leqslant) \cap J} \operatorname{updeg} \sigma(x).$$

Proof. It is clear by Lemma 2.2.

Let *I* be an ideal of *P* and $T(I) = \{x \in P \mid DCov(x) = I\}$. In fact, if *P* is a poset of height 2, we have T(I) is a subset of $H_2(P, \leq)$. The following lemma shows T(I) is not empty if *I* is an ideal in $H_1(P, \leq)$.

Lemma 2.5. Let P be a CPP of height 2 and downdeg(x) = r for all $x \in H_2(P, \leq)$. Let I be an ideal in $H_1(P, \leq)$ with |I| = r. Then T(I) is not an empty set, i.e., $|T(I)| \ge 1$.

Proof. Since downdeg(x) = r for any $x \in H_2(P, \leq)$, there is an *r*-element ideal I_0 in $H_1(P, \leq)$ such that $I_0 = DCov(x)$. On the other hand, assume that there exists an *r*-element ideal *I* in $H_1(P, \leq)$ such that $T(I) = \emptyset$. Then I_0^c and I^c are not isomorphic in P^d , while I_0 and *I* are isomorphic in *P*. Hence, this contradicts the hypothesis that *P* is a CPP. Therefore, $T(I) \neq \emptyset$.

Proposition 2.6. Let P be a CPP of height 2 and downdeg(x) = r for all $x \in H_2(P, \leq)$. Suppose that I and J are ideals in $H_1(P, \leq)$ with |I| = |J| = r. Then |T(I)| = |T(J)|.

Proof. Suppose that I and J are ideals in $H_1(P, \leq)$ with |I| = |J| = r. Let $S_1 = D(I)$ and $S_2 = D(J)$ in P^d . Then clearly, $T(I) \subseteq S_1$ and $T(J) \subseteq S_2$. Since I and J are isomorphic in a CPP P, we have $I^c \cong J^c$ in P^d . Since I^c has no element of I, I^c has exactly |T(I)| isolated elements from the definition of T(I). Similarly, J^c has exactly |T(J)| isolated elements. Therefore, |T(I)| = |T(J)|.

In Proposition 2.6, we emphasize the existence of an invariant s which is the number of elements of $H_2(P, \leq)$, each of which covers every element of any r-element ideal where r = downdeg(x) for $x \in H_2(P, \leq)$.

3. Relationship among four categories of posets

An ideal of a poset P is clearly a tower of P. It is clear that if a poset P is tower-homogeneous, then it is ideal-homogeneous. Therefore, we have the following proposition.

Proposition 3.1. Every tower-homogeneous poset is ideal-homogeneous.

However, the converse is not always true (See Figure 1). As a matter of fact, in Figure 1, the towers $I = \{1, 2\}$ and $J = \{3, 4\}$ are isomorphic with isomorphism α where $\alpha(1) = 3$ and $\alpha(2) = 4$. It can be easily seen that α cannot be extended to any automorphism of P. Hence, P is not tower-homogeneous. Moreover, P^d is not a QCPP as stated previously.

According to Theorem 1.2, a tower-homogeneous poset of height 2 is one of the following cases:

- (i) C(p,q) for some $p,q \ge 1$.
- (ii) A(n,k) for some $n,k \ge 1$.
- (iii) B(n) for $n \ge 3$.

Then, from the definitions of these posets, C(p,q) and B(n) are CPPs, and A(1,k) is a CPP. However, A(n,k) is not a CPP but a QCPP for $n \ge 2$. That is, the converse of Theorem 1.2 is not true.

Theorem 3.2. Every CPP of height 2 is tower-homogeneous.

Proof. For a given CPP P of height 2 and $x \in H_2(P, \leq)$, let downdeg(x) = r and $|H_1(P, \leq)| = m \geq r$. For every r-element subset I of $H_1(P, \leq)$, by Proposition 2.6, there is the fixed number |T(I)| (denoted by $t) \geq 1$ of elements of $H_2(P, \leq)$ which cover all elements of I. In order to show the result, we only have to check the following five cases; (1) r = m, (2) r = m - 1 and t = 1, (3) r = 1, (4) 1 < r < m - 1, and (5) r = m - 1 and t > 1.

(1) If r = m, then P is isomorphic to C(r, t).

(2) If r = m - 1 and t = 1, then P is isomorphic to B(m).

(3) If r = 1, then P is isomorphic to A(m,t). If $m \ge 2$, then A(m,t) is not a CPP so that we exclude all other possibilities for $m \ge 2$.

(4) Suppose 1 < r < m - 1. Let $x_0 \in H_1(P, \leq)$ and $u \in H_2(P, \leq)$ with $x_0 < u$. Since r < m - 1, there exist distinct $y, z \in H_1(P, \leq)$ incomparable with u. Let S_1 be the set of elements of $H_1(P, \leq)$ covered by u. Since r > 1, there exists $x_1 \in S_1 \setminus \{x_0\}$. Then there exists $v \in H_2(P, \leq)$ such that $D(v) = (S_1 \setminus \{x_0\}) \cup \{y\}$, say S_2 , in P. And there exists $w \in H_2(P, \leq)$ such that $D(w) = (S_1 \setminus \{x_0, x_1\}) \cup \{y, z\}$, say S_3 , in P. Let $I = \{u, v\}$ and $J = \{u, w\}$, then $I \cong J$ in P^d . We count the decreasing numbers of updeg(x) for $x \in H_1(P, \leq)$ in I^c and J^c , respectively.

The up-degrees of x_0 and y in I^c are one less than those of x and y in P, and the up-degree of $a \in S_1 \cap S_2$ in I^c is reduced by two. The up-degrees of others are not changed in I^c . On the other hand, the up-degrees of x_0, x_1, y, z in J^c are one less than those of x_0, x_1, y, z in P, and the up-degree of $b \in S_1 \cap S_3$ in J^c is reduced by two in J^c . The up-degrees of others are not changed in J^c . Note that $|S_1 \cap S_2| = r - 1$ and $|S_1 \cap S_3| = r - 2$. That is, in I^c , there are r - 1 elements in $H_1(P, \leq)$ whose up-degrees are reduced by two; however, in J^c , there are r - 2 elements in $H_1(P, \leq)$ whose up-degrees are reduced by two, which means that $I^c \ncong J^c$ in P. Therefore, P is not a CPP.

(5) Suppose r = m - 1 and t > 1 and $m \ge 3$. Then there exist distinct $x_0, y, z \in H_1(P, \leq)$. Note that P is a CPP. From Lemma 2.2 and its corollary, there exist $u, v, w \in H_2(P, \leq)$ such that $D(u) = D(v) = H_1(P, \leq) \setminus \{y\}$ and $D(w) = H_1(P, \leq) \setminus \{z\}$. Now let $I = \{u, v\}$ and $J = \{u, w\}$ then $I \cong J$ in P^d . The up-degree of $a \in H_1(P, \leq)$ is reduced by two in I^c , and that of y is not changed in I^c . On the other hand, the up-degree of $b \in D(u) \setminus D(w)$ is reduced by one, and that of $c \in D(u) \cap D(w)$ is reduced by two, and that of $d \in D(w) \setminus D(u)$ is reduced by one. Note that $D(u) \setminus D(w) = \{z\}, D(w) \setminus D(u) = \{y\}$ and $H_1(P, \leq) = D(u) \cup \{y\} = D(w) \cup \{z\}$. This implies that $|D(u) \cap D(w)| = r - 1$. Consequently, in I^c , there are r elements in $H_1(P, \leq)$ whose up-degrees are reduced by two, which implies that $I^c \ncong J^c$ in P. Therefore, P is not a CPP.

Through the cases, from (1) to (5), if P is a CPP of height 2, then P is one of A(1,t), B(m), and C(m,t). Therefore, P is a tower-homogeneous poset. \Box

If a poset P is ideal-homogeneous, then, for ideals I and J with $I \cong_{\sigma} J$, there exists an automorphism $\sigma^* \in \operatorname{Aut} P$ such that $\sigma^*|_I = \sigma$. The restriction of σ^* to I^c induces an isomorphism from I^c to J^c . Therefore P is a QCPP as stated:

Proposition 3.3. Every ideal-homogeneous poset of height 2 is a QCPP.

For the converse of Proposition 3.3, we give a conjecture as follows.

Conjecture 3.4. Every QCPP of height 2 is ideal-homogeneous.

The results are summarized in Figure 2.

378

FIGURE 2. A relationship between the homogeneity classes of posets of height 2

Acknowledgment. The authors are grateful to the anonymous referees whose comments improved the clarity of this paper as well as Jong-Yoon Hyun for giving us the idea on a quasi-complement preserved poset and a complement preserved poset.

References

- [1] G. Behrendt, Homogeneity in finite ordered sets, Order 10 (1993), no. 1, 65–75.
- [2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second Edition, Cambridge University Press, 2002.
- [3] A. Gardiner, Homogeneity conditions in graphs, J. Combin. Theory Ser. B 24 (1978), no. 3, 301–310.
- [4] J. Y. Hyun, in personal communication.
- [5] J. H. Schmerl, Countable homogeneous partially ordered sets, Algebra Universalis 9 (1979), no. 3, 317–321.
- [6] W. T. Trotter, Combinatorics and Partially Ordered sets: Dimension theory, The Johns Hopkins University Press, 1992.

GAB-BYUNG CHAE DIVISION OF MATHEMATICS AND INFORMATIONAL STATISTICS INSTITUTE OF NATURAL BASIC SCIENCES WONKWANG UNIVERSITY IKSAN 570-749, KOREA *E-mail address*: rivendell@wku.ac.kr

MINSEOK CHEONG DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY SEOUL 121-742, KOREA *E-mail address*: macross@sogang.ac.kr

SANG-MOK KIM DEPARTMENT OF MATHEMATICS KWANGWOON UNIVERSITY SEOUL 139-701, KOREA *E-mail address*: smkim@kw.ac.kr 379