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SOME HOMOGENEITY CLASSES OF POSETS OF HEIGHT 2

Gab-Byung Chae, Minseok Cheong, and Sang-Mok Kim

Abstract. In this paper, we find the inclusion relation among four cate-
gories of posets, i.e., ideal-homogeneous, tower-homogeneous, quasi-com-

plement-preserved, and complement-preserved posets.

1. Introduction

It is a well-known problem to give classifications of those which satisfy certain
homogeneity conditions in graph theory [3], and a characterization of count-
able partially ordered sets was given in [5]. It is very natural to ask whether
every isomorphism between finite substructures can be extendable to an au-
tomorphism of the whole structure. A few decades later, some results on the
homogeneity for finite partially ordered sets are also given by G. Behrendt [1],
and they make resume to investigate the relationship between the homogeneity
conditions for finite partially ordered sets.

Suppose (P,⩽) is a finite partially ordered set (simply called a finite poset)
with a partial order relation ⩽, which is simply denoted by P for convenience.
If Q ⊂ P, we may refer to Q also as a poset, having in mind the subposet
(Q,⩽) whose order relation is the restriction of (P,⩽)’s.

A chain is said to be maximal if it is not a proper subposet of any other chain.
A maximum chain is a maximal chain with the maximum cardinality. The
height of a poset P , denoted by ht(P ), is the number of points in a maximum
chain, and the length is one less than the height, denoted by l(P ). An element
x ∈ P is maximal if there is no element y( ̸= x) ∈ P such that x ⩽ y. For
an element x ∈ P, the height ht(x) is the maximal cardinality of chains in
{y ∈ P | y ⩽ x}. For a positive integer n, let Hn(P,⩽) = {x ∈ P | ht(x) = n}.

We say that x is covered by y in P (also, y covers x in P and (x, y) is a
covering pair in P ) when x ⩽ y and there is no z ∈ P with x ̸= z ̸= y such
that x ⩽ z ⩽ y. For a covering pair (x, y), y is called a up-cover of x, and x is
called a down-cover of y. Let UCov(x) be the set of all up-covers of x. Define
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updeg(x) as |UCov(x)|. Similarly, let DCov(x) be the set of all down-covers of
x, and downdeg(x) = |DCov(x)|.

For a poset P and x ∈ P, let U [x] = {y ∈ P | y ⩾ x in P} and D[x] =
{y ∈ P | y ⩽ x in P}. Also, we let U [A] = ∪x∈AU [x] and D[A] = ∪x∈AD[x]
for a subposet A of P . Let U(x) = {y ∈ P | y ⩾ x in P} \ {x} and D(x) =
{y ∈ P | y ⩽ x in P} \ {x}. Also, we let U(A) = ∪x∈AU(x) \ A and D(A) =
∪x∈AD(x) \A for a subposet A of P .

The dual of a poset P , denoted by P d = (P,⩽)d, is defined as (P,⩽d) where
x ⩽ y in P if and only if y ⩽d x in P d. A poset P is self-dual if P is isomorphic
to P d.

A map f : (P,⩽) → (Q,⩽′) of posets is order-preserving if x ⩽ y implies
f(x) ⩽′ f(y) for all x, y ∈ P. If x ⩽ y implies f(y) ⩽′ f(x), the map is
order-reversing. Two posets (P,⩽) and (Q,⩽′) are isomorphic if there exists
an order-preserving bijection f : (P,⩽) → (Q,⩽′) such that f−1 is also order-
preserving. A bijection f : (P,⩽) → (P,⩽) is an automorphism if f and f−1 are
order-preserving, and an antiautomorphism if f and f−1 are order-reversing.
We denote the set of all automorphisms of a poset P by Aut(P ).

An ideal I of P is a non-empty subset of P such that if x ⩽ y for x ∈ P
and y ∈ I, then x ∈ I. A poset P is ideal-homogeneous, provided that, for any
ideals I and J with I ∼=σ J , there exists an automorphism σ∗ ∈ AutP such
that σ∗|I = σ. A poset P is weakly ideal-homogeneous, provided that for each
I of P and σ ∈ Aut(I), there is σ∗ ∈ Aut(P ) such that σ∗|I = σ.

A subset S of P is called a tower in P if for every x ∈ S there exists a
maximal chain C in {y ∈ P | y ⩽ x} such that C ⊂ S. We call a poset P tower-
homogeneous if for two isomorphic towers S1 and S2 with an isomorphism
σ : S1 → S2, there exists an automorphism β in Aut(P ) such that σ(x) = β(x)
for all x ∈ S1. We say that (P,⩽) is weakly tower-homogeneous if for each
tower S and each automorphism σ ∈ Aut(S), there exists an automorphism β
in Aut(P ) such that σ(x) = β(x) for all x ∈ S. Throughout this paper, let N,
Z, and [n] denote the set of all natural numbers, the set of all integers, and
{x ∈ Z | 1 ≤ x ≤ n}, respectively.

The following two theorems, due to Behrendt [1], characterizes the (weakly)
ideal-homogeneous posets and (weakly) tower-homogeneous posets of height 2,
respectively.

Theorem 1.1 ([1]). Let (P,⩽) be a finite partially ordered set of height-two.
The followings are equivalent.

(i) (P,⩽) is ideal-homogeneous.
(ii) (P,⩽) is weakly ideal-homogeneous.
(iii) There exist a positive integer n and a function f : [n] → N such that

there exists i ∈ [n] with f(i) ̸= 0 and (P,⩽) is isomorphic to (X,⩽)
where

X = [n] ∪ {(S, i) | ∅ ̸= S ⊆ [n], 1 ≤ i ≤ f(|S|)}
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Figure 1. P is QCPP and ideal-homogeneous poset which is
neither tower-homogeneous nor CPP

and for k ∈ [n], ∅ ̸= S ⊆ [n], 1 ≤ i ≤ f(|S|), let

k ⩽ (S, i) if and only if k ∈ S.

For integers p, q ≥ 1, let C(p, q) be the linear sum R1 ⊕ R2 of two disjoint
antichains R1 = {a1, . . . , ap} and R2 = {b1, . . . , bq}, i.e., all ai’s in R1 are
incomparable, and all bj ’s in R2 are also incomparable, and ai ⩽ bj for all ai ∈
R1 and bj ∈ R2. For integers n, k > 1, let A(n, k) be the disjoint sum of n copies
of C(1, k). For n ≥ 3 let B(n) be the poset consisting of 1-element subsets and
(n− 1)-element subsets of {1, . . . , n}, ordered by set-theoretic inclusion.

Theorem 1.2 ([1]). Let (P,⩽) be a finite height-two ordered set. The following
are equivalent.

(i) (P,⩽) is tower-homogeneous.
(ii) (P,⩽) is weakly tower-homogeneous.
(iii) (P,⩽) is isomorphic to C(p, q) for some p, q ≥ 1, or to A(n, k) for

some n, k ≥ 1 or to B(n) for n ≥ 3.

Definition 1 ([4]). Let I and J be ideals of a poset P . Then P is called a
quasi-complement-preserved poset (QCPP) if I ∼= J in P , then Ic ∼= Jc in P d.

It looks like that, for two isomorphic ideals I and J of P d, if P is a QCPP,
then Ic ∼= Jc in P . However, in Figure 1, I = {2} and J = {4} are isomorphic
in P d, but Ic and Jc are not isomorphic in P while P is a QCPP. Hence we can
define a type of poset which is a QCPP satisfying the converse of Definition 1,
as follows.

Definition 2. A poset P is a complement-preserved poset (CPP) if P and P d

are QCPPs.

In this paper, we find the relationship among these four homogeneity classes
of posets of height 2.



376 GAB-BYUNG CHAE, MINSEOK CHEONG, AND SANG-MOK KIM

2. Ideals in a quasi-complement-preserved poset

Lemma 2.1. For a poset P , if I is an ideal in P , then Ic is an ideal in P d.

Proof. Let x ∈ Ic and y ⩽ x in P d. Then x ⩽ y in P. Since x ∈ Ic, we have
x /∈ I. Since x ⩽ y in P, we have y /∈ I, i.e., y ∈ Ic. Therefore Ic is an ideal in
P d. □

Lemma 2.2. If P is a CPP and x, y ∈ H1(P,⩽), then updeg x = updeg y.

Proof. Suppose I = {x} and J = {y} for any elements x, y in H1(P,⩽). Then
I ∼= J . Since P is a CPP, we have Ic ∼= Jc. Let m be the number of edges
in P when, temporarily, we regard P as a graph, and m′ be the number of
edges in Ic and m′′ be the number of edges in Jc. Since I = {x}, we have
updeg x = deg x = m − m′ and, similarly, m − m′′ = deg y = updeg y. Since
Ic ∼= Jc, we have

m−m′ = m−m′′.

Therefore

updeg x = updeg y

for every x, y in H1(P,⩽). □

Consequently, we have the following result from the duality of a CPP.

Corollary 2.3. If P is a CPP and x, y are maximal elements, then

downdeg(x) = downdeg(y).

Lemma 2.4. Let P be a CPP. Suppose I and J are ideals in P such that
I ∼=σ J . Then ∑

x∈H1(P,⩽)∩I

updeg x =
∑

σ(x)∈H1(P,⩽)∩J

updeg σ(x).

Proof. It is clear by Lemma 2.2. □

Let I be an ideal of P and T (I) = {x ∈ P | DCov(x) = I}. In fact, if P is a
poset of height 2, we have T (I) is a subset of H2(P,⩽). The following lemma
shows T (I) is not empty if I is an ideal in H1(P,⩽).

Lemma 2.5. Let P be a CPP of height 2 and downdeg(x) = r for all x ∈
H2(P,⩽). Let I be an ideal in H1(P,⩽) with |I| = r. Then T (I) is not an
empty set, i.e., |T (I)| ≥ 1.

Proof. Since downdeg(x) = r for any x ∈ H2(P,⩽), there is an r-element ideal
I0 in H1(P,⩽) such that I0 = DCov(x). On the other hand, assume that there
exists an r-element ideal I in H1(P,⩽) such that T (I) = ∅. Then Ic0 and Ic

are not isomorphic in P d, while I0 and I are isomorphic in P . Hence, this
contradicts the hypothesis that P is a CPP. Therefore, T (I) ̸= ∅. □
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Proposition 2.6. Let P be a CPP of height 2 and downdeg(x) = r for all
x ∈ H2(P,⩽). Suppose that I and J are ideals in H1(P,⩽) with |I| = |J | = r.
Then |T (I)| = |T (J)|.

Proof. Suppose that I and J are ideals in H1(P,⩽) with |I| = |J | = r. Let
S1 = D(I) and S2 = D(J) in P d. Then clearly, T (I) ⊆ S1 and T (J) ⊆ S2.
Since I and J are isomorphic in a CPP P , we have Ic ∼= Jc in P d. Since Ic has
no element of I, Ic has exactly |T (I)| isolated elements from the definition of
T (I). Similarly, Jc has exactly |T (J)| isolated elements. Therefore, |T (I)| =
|T (J)|. □

In Proposition 2.6, we emphasize the existence of an invariant s which is
the number of elements of H2(P,⩽), each of which covers every element of any
r-element ideal where r = downdeg(x) for x ∈ H2(P,⩽).

3. Relationship among four categories of posets

An ideal of a poset P is clearly a tower of P . It is clear that if a poset P
is tower-homogeneous, then it is ideal-homogeneous. Therefore, we have the
following proposition.

Proposition 3.1. Every tower-homogeneous poset is ideal-homogeneous.

However, the converse is not always true (See Figure 1). As a matter of
fact, in Figure 1, the towers I = {1, 2} and J = {3, 4} are isomorphic with
isomorphism α where α(1) = 3 and α(2) = 4. It can be easily seen that
α cannot be extended to any automorphism of P . Hence, P is not tower-
homogeneous. Moreover, P d is not a QCPP as stated previously.

According to Theorem 1.2, a tower-homogeneous poset of height 2 is one of
the following cases:

(i) C(p, q) for some p, q ≥ 1.
(ii) A(n, k) for some n, k ≥ 1.
(iii) B(n) for n ≥ 3.

Then, from the definitions of these posets, C(p, q) and B(n) are CPPs, and
A(1, k) is a CPP. However, A(n, k) is not a CPP but a QCPP for n ≥ 2. That
is, the converse of Theorem 1.2 is not true.

Theorem 3.2. Every CPP of height 2 is tower-homogeneous.

Proof. For a given CPP P of height 2 and x ∈ H2(P,⩽), let downdeg(x)
= r and |H1(P,⩽)| = m ≥ r. For every r-element subset I of H1(P,⩽), by
Proposition 2.6, there is the fixed number |T (I)|(denoted by t)≥ 1 of elements
of H2(P,⩽) which cover all elements of I. In order to show the result, we only
have to check the following five cases; (1) r = m, (2) r = m− 1 and t = 1, (3)
r = 1, (4) 1 < r < m− 1, and (5) r = m− 1 and t > 1.

(1) If r = m, then P is isomorphic to C(r, t).
(2) If r = m− 1 and t = 1, then P is isomorphic to B(m).
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(3) If r = 1, then P is isomorphic to A (m, t). If m ≥ 2, then A(m, t) is not
a CPP so that we exclude all other possibilities for m ≥ 2.

(4) Suppose 1 < r < m − 1. Let x0 ∈ H1(P,⩽) and u ∈ H2(P,⩽) with
x0 < u. Since r < m − 1, there exist distinct y, z ∈ H1(P,⩽) incomparable
with u. Let S1 be the set of elements of H1(P,⩽) covered by u. Since r >
1, there exists x1 ∈ S1 \ {x0}. Then there exists v ∈ H2(P,⩽) such that
D(v) = (S1 \ {x0}) ∪ {y}, say S2, in P . And there exists w ∈ H2(P,⩽)
such that D(w) = (S1 \ {x0, x1}) ∪ {y, z}, say S3, in P . Let I = {u, v} and
J = {u,w}, then I ∼= J in P d. We count the decreasing numbers of updeg(x)
for x ∈ H1(P,⩽) in Ic and Jc, respectively.

The up-degrees of x0 and y in Ic are one less than those of x and y in P , and
the up-degree of a ∈ S1 ∩ S2 in Ic is reduced by two. The up-degrees of others
are not changed in Ic. On the other hand, the up-degrees of x0, x1, y, z in Jc

are one less than those of x0, x1, y, z in P , and the up-degree of b ∈ S1 ∩ S3

in Jc is reduced by two in Jc. The up-degrees of others are not changed in Jc.
Note that |S1 ∩ S2| = r − 1 and |S1 ∩ S3| = r − 2. That is, in Ic, there are
r − 1 elements in H1(P,⩽) whose up-degrees are reduced by two; however, in
Jc, there are r− 2 elements in H1(P,⩽) whose up-degrees are reduced by two,
which means that Ic ≇ Jc in P . Therefore, P is not a CPP.

(5) Suppose r = m − 1 and t > 1 and m ≥ 3. Then there exist distinct
x0, y, z ∈ H1(P,⩽). Note that P is a CPP. From Lemma 2.2 and its corollary,
there exist u, v, w ∈ H2(P,⩽) such that D(u) = D(v) = H1(P,⩽) \ {y} and
D(w) = H1(P,⩽) \ {z}. Now let I = {u, v} and J = {u,w} then I ∼= J in P d.
The up-degree of a ∈ H1(P,⩽) is reduced by two in Ic, and that of y is not
changed in Ic. On the other hand, the up-degree of b ∈ D(u)\D(w) is reduced
by one, and that of c ∈ D(u)∩D(w) is reduced by two, and that of d ∈ D(w) \
D(u) is reduced by one. Note that D(u)\D(w) = {z}, D(w)\D(u) = {y} and
H1(P,⩽) = D(u)∪{y} = D(w)∪{z}. This implies that |D(u)∩D(w)| = r−1.
Consequently, in Ic, there are r elements in H1(P,⩽) whose up-degrees are
reduced by two; however, in Jc, there are r− 1 elements whose up-degrees are
reduced by two, which implies that Ic ≇ Jc in P . Therefore, P is not a CPP.

Through the cases, from (1) to (5), if P is a CPP of height 2, then P is one
of A(1, t), B(m), and C(m, t). Therefore, P is a tower-homogeneous poset. □

If a poset P is ideal-homogeneous, then, for ideals I and J with I ∼=σ J ,
there exists an automorphism σ∗ ∈ AutP such that σ∗|I = σ. The restriction
of σ∗ to Ic induces an isomorphism from Ic to Jc. Therefore P is a QCPP as
stated:

Proposition 3.3. Every ideal-homogeneous poset of height 2 is a QCPP.

For the converse of Proposition 3.3, we give a conjecture as follows.

Conjecture 3.4. Every QCPP of height 2 is ideal-homogeneous.

The results are summarized in Figure 2.
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Figure 2. A relationship between the homogeneity classes of
posets of height 2
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