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MATHEMATICAL ANALYSIS OF A MULTIFLUID

INTERPENETRATION MIX MODEL

Hyeonseong Jin

Abstract. The equations of a multifluid interpenetration mix model are
analyzed. The model is an intermediate mix model in the sense that it is
defined by partial pressures but only a single global pressure and a single

global temperature. It none-the-less avoids the stability difficulty. It is
shown that the model is hyperbolic so that it is mathematically stable.

1. Introduction

For many purpose, the mean flow properties of each fluid phase or species of
multifluid flow are sufficient information and the detailed flow description pro-
vided by a finely resolved simulation is more than required. It is for this reason
that the derivation of averaged equations is a popular study [18, 5, 16]. Aver-
aging is one of the most basic tools to deal with multiscale science, whether in
turbulence modeling, materials science, etc. The equations of multiphase flow
are derived by averaging the microphysical equations. This process introduces
an essential difficulty, the closure problem, to replace the unknown averages
of nonlinear expressions by some expressions written in terms of the averaged
variables, to yield a closed set of equations. Different choices of closures, appro-
priate for distinct flow regimes, contribute to the number of different multiphase
flow equations.

Multiphase equations also differ in the variables selected for averaging. For
the first order closures, as are generally considered for multiphase flow, these
would be averages of the conserved variables (density, momentum, energy)
of each species. Possible additional variables would be the volume fractions
and surface areas. Reduced models result from enforced constraints among
these variables, such as common temperatures, pressures, or velocities among
the species. The fully reduced model, in which all temperatures, pressures
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and velocities are equilibrated, is known as atomic mix. We refer to models
assuming equilibration among one or two of these variables as intermediate
models, and the complete model, with a complete set of independent variables
for each species is denoted the chunk mix model, or the complete first order
multiphase closure.

In general, the intermediate models with pressure and possibly thermal equi-
librium have two fundamental problems. They are mathematically and numer-
ically unstable, with complex characteristics for time propagation. Thus, the
models are physically unacceptable and lead to ill-posed problems. As nor-
mally considered, with regularizing terms, e.g. from viscosity for numerical
stabilization, the magnitude of the coefficients governing the regularization is
determined by numerical stability considerations rather than by physical mea-
surements. The result is a possibly overly smoothed solution of a possibly overly
diffusive model. An additional problem for these intermediate models is a loss
of thermodynamic completeness for the individual species. This deficiency is
accommodated by some assumption, for example of an isentropic equilibration
to the thermodynamically constrained values. The thermodynamic assump-
tions of the intermediate models are rarely documented, and since they are
intended for use in cases where entropy is not conserved, the resulting errors
are also not generally examined. See the discussion in [4, 9]. These problems
not withstanding, intermediate models are widely used [19, 20, 7, 14].

In contrast to the single-pressure models [17, 13, 11], the chunk mix two-
pressure models [13, 1, 2, 5] which have distinct phase pressures eliminate
mathematical difficulties associated with single pressure flow models, leading
to hyperbolic models. An independent evolution equation for the volume frac-
tion is used as an alternative to setting an equilibrated pressure. The chunk
mix models have been analyzed in [3, 6, 8]. They could be considered the full or
complete first order multiphase closure, in that they contain in some sense the
intermediate closures as limiting cases. It has been used in this sense to derive
a two temperature closure which is velocity and pressure equilibrated [4]. The
pressures of the chunk model are close to equilibration, but by not imposing this
equality as an identity, it avoids some complications of mixed phase thermo-
dynamics and issues of hyperbolic instability in the averaged equations, which
would lead to a non-physical phase separation. The single pressure projection
reduces the model to a system of single pressure equations. The constraint of
pressure equilibrium between phases produces a boundary between hyperbolic
and nonhyperbolic regions [10].

The interpenetration mix model proposed by Scannapieco and Cheng [15] is
intermediate in the sense that it is defined by partial pressure but only a single
global pressure and a single global temperature. It none-the-less avoids both
difficulties of the intermediate models. We analyze the Scannapieco-Cheng
model in a characteristic analysis. Main result is that this model is hyperbolic
(mathematically and numerically stable) in the sense considered here, and each
partial pressure is defined by the laws of thermodynamics for its own species.
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Thus the thermodynamics of this model is that of atomic mix. This analysis
implies that the model containing two partial pressures results in a system
which exhibits change of type (hyperbolic/nonhyperbolic) [11, 12].

2. Analysis of the multifluid mix model

Scannapieco and Cheng [15] have proposed a multifluid interpenetration mix
model, in which the set of multifluid equations was derived rigorously from
the collisional Boltzmann equation in a self-consistent manner. The model
equations are mathematically complete and physically consistent with only
one free parameter. Here we analyze the interpenetration mix model by a
characteristic analysis.

For the multifluid interpenetration mix, we have the species equations
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and the bulk fluid equations
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represent, respectively, the total stress tensor of the bulk fluid and the total
stress tensor of species s in a frame moving with the mean mass velocity and
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are, respectively, the total mass mean energy flux density of the bulk fluid and
the total energy flux density for species s. The collision terms are
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We denote the average of a physical quantity ϕs of species s by

⟨ϕs⟩ ≡ 1

Ns

∫
ϕsfs d3vs.(12)

Here Ns is the total number density of particles of species s defined as

Ns ≡
∫

fs d3vs,(13)

where f(t, xj , vj) is the single-particle distribution function which represents
the number density of particles found in an infinitesimal volume of phase space
centered on the phase space point (xj , vj) at time t and satisfies the collisional
Boltzmann equation
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The species velocity vsj is written as a sum of its peculiar (fluctuating) ve-
locity Us

j and the mean-mass bulk flow velocity v∗j ,

vsj ≡ Us
j + v∗j , v∗j ≡
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s N
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,(15)

where Ms is the mass of a particle of species s. Using (15), the species and
bulk fluid equations (1)-(6) have been derived by transformation of variable
set from (t, xj , v

s
j ) to (t, xj , v

∗
j , U

s
j ). The system of the equations results in a

9×9 system for the species s = 1, 2. The split of the species velocity makes the
characteristic analysis of the system complicated. Thus we derive the simplified
equations by undoing the split of the species velocity.

We average the collisional Boltzmann equation (14) multiplied by any phys-
ical quantity ϕs of species s by integration over velocity space. Then we obtain
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the averaged equation of any physical quantity ϕs as follows:
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We now derive the momentum equation by applying the quantity ϕs =
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represent the corresponding quantities for the bulk fluid mixture. Specifically,
the mean global pressure P ∗ exists in the bulk fluid equations (5) and (6).
Using Eqs.(18) and (19), we obtain the momentum equation
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Applying ϕs = 1
2M

svsjv
s
j to Eq.(16), we derive the energy equation. Then
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and (25) into (23) and using the equation

(29)

∂

∂t

(
1

2
ρs

⟨
vsj
⟩ ⟨

vsj
⟩)

+
∂

∂xi

(
1

2
ρs ⟨vsi ⟩

⟨
vsj
⟩ ⟨

vsj
⟩)

+
⟨
vsj
⟩ ∂

∂xi
P s
ij

= ρs
⟨
asj
⟩ ⟨

vsj
⟩
+
⟨
vsj
⟩ [

(As
j)coll −

⟨
Us
j

⟩
Ss
coll +

1

2

⟨
vsj
⟩
Ss
coll

]
which is derived from (1) and (22), we obtain the energy equation

(30)

∂esT
∂t

+
∂

∂xi
(⟨vsi ⟩ esT ) + P s

ij

∂

∂xi

⟨
vsj
⟩
+

∂

∂xi
Qs

T i

= ρs
(⟨

asjv
s
j

⟩
−
⟨
asj
⟩ ⟨

vsj
⟩)

+ Es
coll −

⟨
Us
j

⟩(
(As

j)coll −
1

2

⟨
Us
j

⟩
Ss
coll

)
for esT .

We observe from (22) and (30) that the pressure has in it less than what was
assumed in [13, 17]. As a result, the momentum and energy equations couple
only through non differential source terms, which have no role in the hyperbol-
icity. The hyperbolicity reduces to that for each fluid considered separately. A
further consequence is that the source term in the model equations has more
in it. Thus modeling of this term is of increased importance. The differences
in the pressure in [15] and [13, 17] are in fact subtle. We remark that Eqs.(22)
and (30) can also be obtained by the modification of (2) and (3) by use of (15),
(17), (1).

Assuming inviscid flow, i.e., Qs
T i = 0 and P s

ij = P sδij , suppressing the sub-
scripts i and j, from (1), (22) and (30), we obtain one dimensional multiphase
flow equations which can be written as the form
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for W s, where
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The characteristic analysis gives the result as the following:

Theorem 2.1. The system of the multifluid interpenetration mix model equa-
tions (1), (22) and (30) is mathematically stable with real characteristics for
time propagation.

Proof. The system (31) has eigenvalues
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3. Conclusion

In this paper, we have analyzed the equations of the multifluid interpene-
tration mix model. The model is an intermediate mix model in the sense that
it is defined by partial pressures but only a single global pressure and a single
global temperature. Nevertheless, this model shows hyperbolicity associated
with chunk mix two-pressure models and avoids the mathematical difficulty
associated with single pressure models. The thermodynamics of this model is
that of atomic mix since each partial pressure is defined by the laws of thermo-
dynamics for its own species. Thus, the interpenetration mix model contains
favorable aspects of the intermediate, chunk, atomic mix models.

References

[1] M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation

transition (DDT) in reactive granular materials, Int. J. Multiphase Flows 12 (1986),
861–889.

[2] Y. Chen, J. Glimm, D. H. Sharp, and Q. Zhang, A two-phase flow model of the Rayleigh-
Taylor mixing zone, Phys. Fluids 8 (1996), no. 3, 816–825.

[3] B. Cheng, J. Glimm, D. Saltz, and D. H. Sharp, Boundary conditions for a two pressure
two phase flow model, Physica D 133 (1999), no. 1-4, 84–105.

[4] B. Cheng, J. Glimm, and D. H. Sharp, Multi-temperature multiphase flow model, Z.
Angew. Math. Phys. 53 (2002), no. 2, 211–238.



MATHEMATICAL ANALYSIS 327

[5] D. A. Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech. 15 (1983),
261–291.

[6] J. Glimm, H. Jin, M. Laforest, F. Tangerman, and Y. Zhang, A two pressure numerical
model of two fluid mixing, Multiscale Model. Simul. 1 (2003), no. 3, 458–484.

[7] F. Harlow and A. Amsden, Flow of interpenetrating material phases, J. Comput. Phys.
18 (1975), 440–464.

[8] H. Jin, J. Glimm, and D. H. Sharp, Compressible two-pressure two-phase flow models,

Phys. Lett. A 353 (2006), 469–474.
[9] H. Jin, A study of multi-phase flow models, Indian J. Pure Appl. Math. 40 (2009), no.

3, 201–219.
[10] B. Keyfitz, Admissibility conditions for shocks in conservation laws that change type,

SIAM J. Math. Anal. 22 (1991), no. 5, 1284–1292.
[11] , Change of type in simple models of two-phase flow, In M. Shearer, editor,

Viscous Profiles and Numerical Approximation of Shock Waves, pages 84–104. SIAM,
Philadelphia, PA, 1991.

[12] , Mathematical properties of nonhyperbolic models for incompressible two-phase
flow, Proceedings of the 4th International Conference on Multiphase Flow, New Orleans,
LA, 2001, submitted.

[13] V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, J.

Comput. Phys. 53 (1984), no. 1, 124–151.
[14] R. Saurel and O. LeMetayer, A multiphase model for compressible flows with interfaces,

shocks, detonation waves and cavitation, J. Fluid. Mech. 431 (2001), 239–271.

[15] A. Scannapieco and B. Cheng, A multifluid interpenetration mix model, Phys. Lett. A
299 (2002), 49–64.

[16] S. L. Soo, Particulates and Continuum: Multiphase Fluid Dynamics, Hemisphere, New
York, 1989.

[17] H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comput. Phys.
56 (1984), no. 3, 363–409.

[18] G. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.
[19] D. L. Youngs, Numerical simulation of turbulent mixing by Rayleigh-Taylor instability,

Physica D 12 (1984), 32–44.
[20] , Modeling turbulent mixing by Rayleigh-Taylor instability, Physica D 37 (1989),

270–287.

Department of Mathematics
Jeju National University

Jeju 690-756, Korea
E-mail address: hjin@jejunu.ac.kr


