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LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN
LOCALLY SYMMETRIC LORENTZ SPACE

DAN YANG

ABSTRACT. Let M be a linear Weingarten spacelike hypersurface in a
locally symmetric Lorentz space with R = aH + b, where R and H are
the normalized scalar curvature and the mean curvature, respectively. In
this paper, we give some conditions for the complete hypersurface M to
be totally umbilical.

1. Introduction

Let N"™* be an (n + 1)-dimensional pseudo-Riemannian manifold of index
1, which is called Lorentz space. When the Lorentz space N{‘H is of constant
curvature ¢, we call it Lorentz space form, denoted by Nanrl (¢). A hypersurface
M of a Lorentz space N{"™! is said to be spacelike if the induced metric on M
from that of the Lorentz space is positive definite.

It is well know that spacelike hypersurfaces in a Lorentz space form have
been investigated by many differential geometers from both the physical and
the mathematical points of view. Goddard [9] conjectured that a complete
spacelike hypersurface in de Sitter space V. 1"“ (1) with constant mean curvature
H must be totally umbilical. Akutagawa [2] and Ramanathan [17] proved
independently that the conjecture is true if H? < 1 when n = 2 and n?H? <
4(n—1) when n > 3. In [14], Montiel proved that Goddard’s conjecture is true
provided that M™ is compact. Montiel [15] proved that complete spacelike
hypersurface M™ with H? = 4(n — 1)/n? is isometric to a hyperbolic cylinder
if M™ has at least two ends. Another natural Goddard-like problem is to study
hypersurfaces of Lorentze space with constant scalar curvature. An interesting
result of Cheng and Ishikawa [8] states that the totally umbilical round spheres
are the only compact spacelike hypersurfaces in de Sitter space NJ"™!(1) with
constant normalized scalar curvature R < 1. Some other authors, such as
Brasil-Colares-Palmas [4], Camargo-Chaves-Sousa Jr [5], Caminha [6] and Li
[10] have also worked on related problems.
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When M™ is a complete spacelike hypersurface in de Sitter space N{LH(I)
with R = kH, Cheng [7] proved that if the sectional curvature is non-negative
and H can obtain its maximum on M™, then M™ is totally umbilical. Shu [18§]
obtained a characteristic theorem concerning such hypersurfaces in terms of
the mean curvature.

All of the above results were obtained under the assumption that the ambi-
ent manifolds possess very nice symmetry properties. Many researchers have
recently begun to study ambient manifolds which do not have symmetry in
general, such as locally symmetric Lorentz space, see [3], [13], [12], [19], [20]
and [21]. First of all, we recall that, for constants ¢; and ¢z, Jin Ok Baek et al.
[3] introduced the class of (n + 1)-dimensional Lorentz spaces N""! of index 1
which satisfy the following two conditions (here and in the sequel, K denotes

the sectional curvature on Nj*t1):

(1) for any spacelike vector p and timelike vector v,

(1.1) R(,v) = 1 /n;
(2) for any spacelike vector p and timelike vector v,
(12) X(:U‘,l/) 2 Co.

There are several examples of Lorentz spaces satisfying (1.1) and (1.2), for
instance,

Example 1.1. The Lorentz space form N{""'(c), where —c;/n = ¢y = c.

Example 1.2. Semi-Riemannian product manifold Hf(—cy/n) x N"17F(cy),
c1 > 0, and R} x S"T17k(1). In particular, R} x S™(1) is so-called Einstein
Static Universe.

Example 1.3. Robertson-Walker spacetime N(c, f) = I x; N3(c), where I
denotes an open interval of R{ and f > 0 a smooth function defined on the

interval I, N3(c) a 3-dimensional Riemannian manifold of constant curvature
c.

We denote by Kcp the components of the Ricci tensor of N satisfying
1.1) and (1.2), then the scalar curvature R of N"™ is given b,
1 g y

n+1 n n n
R = E eaKaa=-2 E Koyttiint1 + E Kijji =2c1 + E Kijji-
A=1 i=1 ij=1 ij=1

It is well known R is constant when Lorentz space N{H'1 is locally symmetric,
so Y iy Kijji is constant.

A hypersurface in Lorentz space N. 1"'“ is called linear Weingarten hypersur-
face if cR+dH +e = 0, where c, d, e are constants such that ¢ +d? # 0. When
the constant d vanishes, linear Weingarten hypersurfaces reduce to hypersur-
faces with constant scalar curvature; When the constant ¢ vanishes, linear
Weingarten hypersurfaces reduce to hypersurfaces with constant mean curva-
ture; When the constant e vanishes, linear Weingarten hypersurfaces reduce to
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hypersurfaces with R = kH. In [11], Li-Suh-Wei studied compact linear Wein-
garten hypersurfaces with R = aH + b in unit sphere S"*1(1). In this paper,
we will consider spacelike linear Weingarten hypersurfaces with R = aH + b
in locally symmetric Lorentz space NI”H. Our results as following generalizes
some known ones.

Theorem 1.4. Let Nt be a locally symmetric Lorentz space satisfying (1.1)
and (1.2), M™ is a complete spacelike linear Weingarten hypersurface immersed
in NI”Jrl with R = aH + b satisfying a # 0,b < co. Suppose that the mazimum
of H can be attained on M™. If the sectional curvature of M™ is not less than
—c1/n—cq, then M™ is totally umbilical or an isometric hypersurface with two
distinct principle curvature, one of which is simple.

In particular, when NJ"™ is de Sitter space N"™'(c) (¢ = —c1/n = ¢z > 0),
from Theorem 1.4 we have the following corollary by means of the congruence
Theorem of Abe-Koike-Yamaguchi [1].

Corollary 1.5. Let M™ be a complete spacelike linear Weingarten hypersurface
immersed in N'""*(c) with R = aH + b satisfying a # 0,b < c. Suppose
that the mazximum of H can be attained on M™. If the sectional curvature of
M™ is non-negative, then M™ is totally umbilical or H'(c1) x S"~!(co), where
1/e1 4+ 1/ca =1/c.

Theorem 1.6. Let Nt be a locally symmetric Lorentz space satisfying (1.1)
and (1.2). M™ is a complete spacelike linear Weingarten hypersurface immersed
n Nanrl with R = aH + b satisfying b < co. If S < 2y/n—1(2¢o + ¢1/n), then
either
(1) M™ is totally umbilical, or
(2) sup S = 2v/n — 1(2¢a+c1/n). Ifsup S is attained at some point in M™,
then M™ is isometric to an isometric hypersurface with two distinct
principle curvature, one of which is simple.

2. Preliminaries

Let M™ be an n-dimensional spacelike hypersurface immersed in the Lorentz
space IV f“. We choose a local field of pseudo-Riemannian orthonormal frames
{e1,...,enp1} in N7™ such that, restricted to M™, ey, ..., e, are tangent to
M™, and the vector e, is normal to M™. Let {wi,...,wpt1} be the dual
frame field. In this paper, we make the following convention on the range of
indices:

1<A, B, C<n+1; 1<4, 4, k<n.
Then the structure equations of N{LH are given by

dws = — E EpwAB N\ Wa, wap +wpa =0,
B
1 _
dwap = — g ecwac Nwep — 3 g ecepKapecpwe ANwp,

c C,D
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where g; = 1, £,41 = —1 and K 4pcp denotes the components of the Riemann-
ian curvature tensor of Nj'*'. Then
Kep = Z€BKBCDB, K= ZfAKAA-
B A
Next we define the covariant derivative of Kapcp by
Z egKapep.pws = dKapep — Z es(Kepepwra + Kapcpwes
E E
+ Kapepwec + KapcEWED)-
We restrict these forms to the spacelike hypersurface M™ in NI”+1 and have
wnt1 = 0. The induced metric ds? of M is written as ds? = >, w?. We may
put

(2.1) Wntli = Z hijw;, hij = hji.
j

The quadratic form B =) irj hijwi ®w; @ep41 is the second fundamental form
of M™. We denote L = (h;j)nxn and S =) h?j. The mean curvature vector £

of M™ is defined by
1
§= -~ Zhiien+1~

The length of the mean curvature vector is called the mean curvature of M™,
denote by H. When & # 0, we choose e,,11 to assure H = %Zz h;’iﬂ > 0.
We can obtain the structure equations of M™

dw; = — E wij N\ wy, wij—&—wji:O,
J

1
dwij = — Zwik Nwkj = 5 Z Rijriwr A wr,
k .l

and the Gauss equation

(2.2) Rijii = Kijrr — (hahji — hirhji)

where {R;;i} is the component of the curvature tensor of M™. Let R;; and
R denote the components of the Ricci curvature and the normalized scalar
curvature of M™ respectively. From (2.2) we have

(2.3) Ry, = Z Kjikg — nHh + Z hijhijk,
J J
(2.4) n(n—1)R=> K —n’H>+S.
,J

Let h;;i, denote the covariant derivative of h;; so that

Z hijrwy = dhi; — Z hijwri — Z Rikwi -
k k &
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Then by exterior differentiation of (2.1), we obtain the Codazzi equation
(2.5) hijk = hik; + Kny1ijk-

Next, we define the second covariant derivative of h;; by
D higrwr = dhijr =Y Panjk@mi = Y himk@m; = Y hijmWmk
l m m m
By exterior differentiation of (2.5), we can get the following Ricci identity

(2.6) hijri — hijik = — Z(hijmikl + himBRomjkt)-

m

Restricting the covariant derivative KABCD;E of Kxpcp on M™, then KnHUk;l
is given by
(2.7) _ _ _ _
Kniyijet = Knyijet + Ko vir ki + Kangyijma 1) et + Kmijehmi,

where I_((n+1)ijkl denotes the covariant derivative of I_((n+1)ijk as a tensor on
M™.

The Laplacian of h;; is defined by Ah;; = >, hijek. From (2.5) and (2.6)
we obtain

(2.8)
Ahij =nH;; + Z(Kn+1kikj + Kni1ijkk) — Z (hmkRmijk + RimRmkjk)-
3,5,k i,5,k,m
Since AS = Dok (hiji)’ + ;. hijAhij, then it follows from (2.7) and (2.8)
that
(2.9)
1
VAN
3 S
= hi +
k

VE

nhi; Hj + Z hij(I_(nJrlijk;k + KnJrlkik;j)
1,5,k 1,J
— (8 Kniiknsrr +nH Y hijKni1ini)
k %7

- Z (Rijhomk Kmiji + hijhmi Kmkik + Rijhmk Rimije + Rijhim Rmkik)-

i,5,k,m
Let T=3", ; Tijwiw; be a symmetric tensor on M™ defined by
T;'j = TLH(SZJ — h”

We introduce an operator O associated to T acting on f € C2(M™) by

(2.10) of = ZTijfij = Z(TLH% — hiz) fi;-

2 2
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Setting f = nH in (2.10) and from (2.4) we obtain

O(nH) = Z(nH(Sij — hij)(nH )i
iJ
(2.11) = ) (nH)(nH)ii — Y nhi;jH;;

i i.j
1

= §A(nH)2 — Z(nHl)Q — ZnhUH”

7 i,

1 1 9 9

= AS—on(n—1AR—n?|VH| - > nhijHi;.

0,J
We introduce another operator

-1
L=0+ r 5 al.
Then it follows from R = aH + b and (2.11) that
-1
L(nH) = OmH)+ " aA(nH)
1
(2.12) = O(nH)+ gn(n - 1)AR
1
= §AS—’I’L2|VH|2 —Znh”H”
/L’J
Substituting (2.9) into (2.12) we have
(2.13)
L(nH)
= h?jk —n?|VH|” + Z hij(Knt1ijksk + Kntiking)
ij.k ij.k
— (8 Kniiknsrr +nH Y hijKni1ijni)
k i

- Z (Rijhomk Kmiji + hijhmi Kmkik + Rijhmk Rimije + Rijhim Rmkik)-
i,5,k,m
Lemma 2.1 ([16]). Let p; (1 < i < n) be real numbers such that Y, p1; = 0
and ), u? = %, where 8 = constant > 0. Then

n—2 . -2
2.14 =By s —=p°
(2.14) ﬁ(n—l)ﬂ < : wi < F(n—l)ﬂ

and the equality holds if and only if at least (n — 1) of the u; are equal.

Proposition 2.2. Let M™ be an n-dimensional spacelike linear Weingarten
hypersurface immersed in a locally symmetric Lorentz space L™ satisfying
(1.1) and (1.2) with R=aH +b. Ifa # 0,b < ca, then L is elliptic.
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Proof. If H = 0, we have R = b < cy. It follows from (2.4) that S = n(n —
)b =32, Kijij < n(n—1)(b— c2) < 0. This is impossible. Therefore we have
H > 0. It follows from (2.4) and R = aH + b that

(2.15) S =n’H? +n(n—1)(aH +b) ZKW,
then
(2.16) __t (s 1b+§:

. a = n(n — ]_)H ’I’L 7’L n jitg

We choose a local frame of orthonormal vector fields {e;} such that h;; = X\;d;;.
For any 4, from (2.16) we have
n—1
2
1

nH—)\i—l—m S —n’H —nn—lb—&—z Jiij

(2.17)

1
= 2(nH) —nH\ + S+ Z Giij — §n(n— Dy | (nH)™?
i,
Since K'j“-j > c9, we have
n—1
a

Y

%(Z ARERDIPES % DX+ %n(n —1)(ca —b) ¢ (nH)™!

I#j

Z )\? + % Z )\l)\j + %n(n - 1)(62 - b) (nH)_l

i#] #5157

— {Z)\2+ PR )\iZ)\j—l—%n(n—l)(cQ—b) (nH)™!

ST SN2+ n(n 1) (e —b) p (nH) !

i#£] JAi

N =

It follows from b < ¢o that

(2.18) n-1

a > 0.

Thus L is an elliptic operator. (I
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Proposition 2.3. Let M™ be an n-dimensional spacelike linear Weingarten
hypersurface immersed in a locally symmetric Lorentz space L™ satisfying
(1.1) and (1.2) with R = aH +b. If (n — 1)a® + 4n(cy — b) > 0, then we have

(2.19) Z hie > n?|VH|.
.,k

Moreover, suppose that the equality holds on M™ in (2.19), then H is constant.
Proof. From (2.4) and R = aH + b, we have
(2.20) S =n?H?+n(n—1)(aH +b) Z Jiig

Since Kapcp;g = 0, taking the covariant derivative of (2.20), we have
(2.21) QZ hijhijrx = Sk = (2n2H +n(n — 1)a) Hy,
,J

for every k. Hence, by Cauchy-Schwartz’s inequality, we have

1
2 2 2
(2.22) Zh Z;h”k > (n*H + gn(n —1)a)*|VH?,
75
that is
2 2
(2.23) SZ;h”k > (n’H + 2n(n —1)a)?|VH|?.
75

On the other hand, it follows from (2.20) that
1 2
<n2H + in(n - 1)a> —n%S
1
= n®(n’H?+n(n—1)Ha—S) + ZnQ(n —1)%a?

1
= 2ZKJ”J n—l)b+4n (n—1)%a?

(2.24) > %n2(n —1) ((n —1)a® + 4n(cz — b)) .
Since (n — 1)a? + 4n(cy — b) > 0, we have
1 2
(2.25) <n2H +5n(n = 1)a> > n2S.
It follows from (2.23) and (2.25) that

1
(2.26) S hiy > (nPH+ 5nn = a)?|VH|? > n?S|VH|?
i,5,k

Hence either S =0 and 3, ; , hi;, = n?[VH|? or 35, . b2y > n?|VH|?,
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We suppose >, ;1 i = n*[VH[? on M™. Then equalities in (2.22), (2.23),
(2.24), (2.25) and (2.26) hold.

If (n — 1)a® 4+ 4n(cy — b) > 0, then (n?H + n(n —1)a)? > n*S from (2.24).
Since the second equality in (2.26) holds, we have |VH| = 0 and hence H is
constant on M™.

If (n —1)a® + 4n(cy — b) = 0, since the equality holds in (2.24), we have
(n*H + $n(n — 1)a)? = n®S. This together with (2.21) forces that

(2.27) SZ = 4n’SH?, E=1,...,n.

Since the equality holds in (2.22), there exists a real function ¢, on M™ such
that

(228) hijk = Ckhij7 i, ] = ]., ey,

for every k. Taking the sum on both sides of equation (2.28) with respect to
1 =j, we get

(229) Hk:CkH, k:I,...,n.

From (2.28), we have

(2.30) Sk = QZhijhijk = 2¢;S, k=1,...,n.
]

Multiplying both sides of equations in (2.30) by H and by using (2.29), we have

(2.31) HS), =2H;S, k=1,...,n.
It follows from (2.27) and (2.31) that

(2.32) HES = Hin*H?, kE=1,...,n.
Hence we have

(2.33) IVH|*(S —n*H?) =0.

Suppose that H is not constant on M", we assert that S = n?H?. In fact,
since H is not constant, we have that |VH]| is not vanishing identically on
M™. We denote My = {x € M | |VH| # 0}, then My is open in M. Let
T = S —n?H?, it follows form (2.33) that 7' = 0 in M. From the continuity of
T, we have that T = 0 on the closure cl(My) of My. If M/cl(My) # 0, then H
is constant in M /cl(My). It follows from (2.20) that S is constant and hence T
is constant in M/cl(Mp). From the continuity of T', we have that T =0 on M"
and hence S = n?H?. Tt follows from (2.4) that n(n — 1)R =, . Kji;;. Since
Do Kj;i; is constant, we have that R is constant and hence H is constant. This
is contradict to the assumption. Hence the mean curvature H is constant. [

Lemma 2.4 ([7]). Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below. Let f be a C?-function which is bounded from
above. Then there exists a sequence {qx} such that

lim f(gx) =supf, lm [|[Vf(qs)||=0, limsupLf(qx) <0,

k—o0 k—o00 k

—00
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where Lf = b;f;j, bj > 0 is bounded.

3. Proof of theorems

Proof of Theorem 1.4. We choose ey, ..., ey, such that h;; = X\;0;;, then (2.13)
becomes

= > B =0’ IVHP =8> Knpikniie —nH Y NiKn it
.7,k k %

(3.1) -5 Z (Ai = M) (Kikin + Rikir)-

Next we estimate the right hand of formula (3.1) one by one. Using (1.1) and
(1.2), we have

- SZ Kn-{-lkn-{-lk —nH Z A Kn+1zzn+1
(3.2) —-}: —nHAkclz (S — nH?),

and

—_

1
5 Z >\ - >\k zkzk + R’Lklk) Z a Z(A’L - )\k)2(02 + Kmin)
ik i,k

l\D
[\

(3.3) = n(co+ Kunin)(S —nH?),

where K, denotes the infimum of the sectional curvature of M™. Substituting
(3.2), (3.3) into (3.1) and from Proposition 2.3, we get

(34)  L(nH) > " 0%y — n2|VH + n(Kuin + =+ e2)(S —nH?) >0,
1,5,k

here we used the assumption K, > —% — ¢o. Since L is elliptic and H can

obtain its maximum on M, we deduce that H is constant and the equalities in
(3.4) hold. Thus

(3.5) > iy =n®|VH|? =
0,5,k
and
(3.6) (Kmin + L4 ) (S —nH?) =0.

It follows from (3.6) that either S = nH? and M™ is totally umbilical or
Kmin+ - +co = 0. In the latter case, since the equality in (3.3) holds, we have
that Rjiij = Kmin = —%+ — c2 and K'j“-j = ¢o. It follows from Gauss equation
(2.2) that, for any i, j

(3.7) AN = % + 2o
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If 2L 4 2¢3 = 0, then all the \; are zero, and M™ is totally geodesic. Otherwise,
if <L 4 2¢y # 0, we conclude that M™ has at most two distinct principal curva-
ture. In fact, without loss of generality, we assume that M™ has three distinct
principle curvature A;,, Aj,, Ai;. Then A\ Ay, = Ay Ay = % + 2¢5 and hence
Ai;, = Aiy. This is a contradiction. So M™ has at most two distinct principal
curvature. If all the principle curvatures are equal, we have that M™ is totally
umbilical. Otherwise, without loss of generality, we may suppose that

M= =M= A A== A =g
for some k =1,...,n—1, and Ay = 2+ +2c3. We can prove k=1 orn—1. In
fact, if 1 < k < n—1, it follows from (3.7) that A = pu? = Ay = < 4 2¢,. This
is contradict to A # u. Hence we have k=1 or n — 1.

On the other hand, it follows from (3.5) that \; is constant for every i. Hence

M™ is an isometric hypersurface with two distinct principal curvatures, one of
which is simple. This completes the proof of Theorem 1.4. (I

Proof of Theorem 1.6. When the constant a vanishes, Theorem 1.3 of [21] im-
plies that Theorem 1.6 holds. Next we assume that a is not zero. It follows
from Gauss formula (2.2) that (2.13) becomes

L(’I’LH) = Z th_]k — ’I’L2|VI’I|2 — Szkn-i-lkn-i-lk — nHZ)‘i[_(n+1iin+1
1,5,k k A

(38) - Z()\Z - /\k)szﬂﬂ'k - nHZ )\? + 52.
ik J
Let p; =\, — H and |®|* =, u?, we get

> ui=0, @ =S—nH? > N =y +3H[0] +nH?.
M™ is totally umbilical if and only if |®|? = 0. It follows from Lemma 2.1 that

—2
(3.9)  —nHY A} > —n|H|—~ [0 + 3H|D* + nH®.

Vn(n—1)

From (3.2), we have
(3.10) -5 Z Kotikns1k —nH Z NiK i 1iine1 = c1|®[%
k i
It follows from condition (1.2) that
(3.11) =D = M) Kk > > (A — M)z = nea| @
ik ik

Substituting (3.9), (3.10) and (3.11) into (3.8) and from Proposition 2.3, we
get

-2
(3.12) LinH) > [02(2ncs + 1 — nf? — =2 @) + 0f2).

Vn(n —1)
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Consider the quadratic form
n—2
3.13 y) = —a% —
By the orthogonal transformation
u—\/lzfn{l-i—\/n— Dy+(1—+vn-1))},
v—m{l—kx/n— Dy+ (1++vn— )a:)}

the equation (3.13) becomes
(3.14) Qz,y) =

xy+y2.

(%)

n 2 _ 2
—(u” — 7).
S =)
Let = VnH?2, y = |®|. Then u? +v? = 2% + y? = |®|?> + nH? = S. Hence we
have

n n
9 7 — 9 I o S N L
nes + ¢ + Q(z,y) neg + ¢ 2m(u —|—v)+\/mu
n
3.15 > 2 - —S.
(3.15) = metas =T
It follows from (3.12) and (3.15) that
(3.16) L(nH) > |®[2(2ncs + ¢ — — ).
2y/(n—1)

Since S < 2v/n — 1(2¢2 + ¢1/n), then A; are bounded. It follows from (2.20)
that

(3.17) 2v/n — 1(2¢2 + ¢y /n) > nH? + n(n — 1)(aH +b) — Z Kjiij.

Since Kj;;; is constant, from (3.17) we have that H is bounded. Hence the
Ricci curvature of M™ is bounded from below and nH — \; + %a is bounded.
It follows from Lemma 2.4 that there exists a sequence {qi} such that

Jim (nH)(qe) = sup(nH). lim [[V(nH)(q0)]] = 0. tim sup L(nH) () < 0.

It follows from (2.20) and =1 K;j;; = constant that hmkﬁOO S(qr) =supS.
Evaluating (3.16) at points g, we have

0> (sup S — nsup H?)(2ncy + ¢1 — S L— sup S).
2y/(n—-1)
Since S < 2v/n — 1(2¢2 + ¢1/n), we have
(3.18) sup(S — nH?)(2ncy + ¢ — S L— sup S) = 0.
2y/(n—1)

If sup(S — nH?) = 0, then S = nH? and M" is totally umbilical.

If sup S = 2y/n — 1(2ca+c¢1/n) and sup S is attained on M™, then sup H can
be attained on M™. This together with L(nH) > 0 forces that H is constant.
Then all the inequalities to obtain (3.16) become equalities. Since the equality
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in Lemma 2.1 holds, we have that M™ has two distinct principal curvature.

This completes the proof of Theorem 1.6. O
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