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LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN

LOCALLY SYMMETRIC LORENTZ SPACE

Dan Yang

Abstract. Let M be a linear Weingarten spacelike hypersurface in a
locally symmetric Lorentz space with R = aH + b, where R and H are
the normalized scalar curvature and the mean curvature, respectively. In

this paper, we give some conditions for the complete hypersurface M to
be totally umbilical.

1. Introduction

Let Nn+1
1 be an (n+ 1)-dimensional pseudo-Riemannian manifold of index

1, which is called Lorentz space. When the Lorentz space Nn+1
1 is of constant

curvature c, we call it Lorentz space form, denoted by Nn+1
1 (c). A hypersurface

M of a Lorentz space Nn+1
1 is said to be spacelike if the induced metric on M

from that of the Lorentz space is positive definite.
It is well know that spacelike hypersurfaces in a Lorentz space form have

been investigated by many differential geometers from both the physical and
the mathematical points of view. Goddard [9] conjectured that a complete
spacelike hypersurface in de Sitter spaceNn+1

1 (1) with constant mean curvature
H must be totally umbilical. Akutagawa [2] and Ramanathan [17] proved
independently that the conjecture is true if H2 ≤ 1 when n = 2 and n2H2 ≤
4(n−1) when n ≥ 3. In [14], Montiel proved that Goddard’s conjecture is true
provided that Mn is compact. Montiel [15] proved that complete spacelike
hypersurface Mn with H2 = 4(n− 1)/n2 is isometric to a hyperbolic cylinder
if Mn has at least two ends. Another natural Goddard-like problem is to study
hypersurfaces of Lorentze space with constant scalar curvature. An interesting
result of Cheng and Ishikawa [8] states that the totally umbilical round spheres
are the only compact spacelike hypersurfaces in de Sitter space Nn+1

1 (1) with
constant normalized scalar curvature R < 1. Some other authors, such as
Brasil-Colares-Palmas [4], Camargo-Chaves-Sousa Jr [5], Caminha [6] and Li
[10] have also worked on related problems.

Received October 21, 2010; Revised February 13, 2011.
2010 Mathematics Subject Classification. 53C42.
Key words and phrases. linear Weingarten, spacelike hypersurface, locally symmetric.

c⃝2012 The Korean Mathematical Society

271



272 DAN YANG

When Mn is a complete spacelike hypersurface in de Sitter space Nn+1
1 (1)

with R = kH, Cheng [7] proved that if the sectional curvature is non-negative
and H can obtain its maximum on Mn, then Mn is totally umbilical. Shu [18]
obtained a characteristic theorem concerning such hypersurfaces in terms of
the mean curvature.

All of the above results were obtained under the assumption that the ambi-
ent manifolds possess very nice symmetry properties. Many researchers have
recently begun to study ambient manifolds which do not have symmetry in
general, such as locally symmetric Lorentz space, see [3], [13], [12], [19], [20]
and [21]. First of all, we recall that, for constants c1 and c2, Jin Ok Baek et al.
[3] introduced the class of (n+1)-dimensional Lorentz spaces Nn+1

1 of index 1
which satisfy the following two conditions (here and in the sequel, K̄ denotes
the sectional curvature on Nn+1

1 ):

(1) for any spacelike vector µ and timelike vector ν,

K̄(µ, ν) = −c1/n;(1.1)

(2) for any spacelike vector µ and timelike vector ν,

K̄(µ, ν) ≥ c2.(1.2)

There are several examples of Lorentz spaces satisfying (1.1) and (1.2), for
instance,

Example 1.1. The Lorentz space form Nn+1
1 (c), where −c1/n = c2 = c.

Example 1.2. Semi-Riemannian product manifold Hk
1 (−c1/n)×Nn+1−k(c2),

c1 > 0, and Rk
1 × Sn+1−k(1). In particular, R1

1 × Sn(1) is so-called Einstein
Static Universe.

Example 1.3. Robertson-Walker spacetime N(c, f) = I ×f N3(c), where I
denotes an open interval of R1

1 and f > 0 a smooth function defined on the
interval I, N3(c) a 3-dimensional Riemannian manifold of constant curvature
c.

We denote by K̄CD the components of the Ricci tensor of Nn+1
1 satisfying

(1.1) and (1.2), then the scalar curvature R̄ of Nn+1
1 is given by

R̄ =
n+1∑
A=1

εAK̄AA = −2
n∑

i=1

K̄n+1iin+1 +
n∑

i,j=1

K̄ijji = 2c1 +
n∑

i,j=1

K̄ijji.

It is well known R̄ is constant when Lorentz space Nn+1
1 is locally symmetric,

so
∑n

i,j=1 K̄ijji is constant.

A hypersurface in Lorentz space Nn+1
1 is called linear Weingarten hypersur-

face if cR+dH+e = 0, where c, d, e are constants such that c2+d2 ̸= 0. When
the constant d vanishes, linear Weingarten hypersurfaces reduce to hypersur-
faces with constant scalar curvature; When the constant c vanishes, linear
Weingarten hypersurfaces reduce to hypersurfaces with constant mean curva-
ture; When the constant e vanishes, linear Weingarten hypersurfaces reduce to
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hypersurfaces with R = kH. In [11], Li-Suh-Wei studied compact linear Wein-
garten hypersurfaces with R = aH + b in unit sphere Sn+1(1). In this paper,
we will consider spacelike linear Weingarten hypersurfaces with R = aH + b
in locally symmetric Lorentz space Nn+1

1 . Our results as following generalizes
some known ones.

Theorem 1.4. Let Nn+1
1 be a locally symmetric Lorentz space satisfying (1.1)

and (1.2), Mn is a complete spacelike linear Weingarten hypersurface immersed
in Nn+1

1 with R = aH + b satisfying a ̸= 0, b < c2. Suppose that the maximum
of H can be attained on Mn. If the sectional curvature of Mn is not less than
−c1/n− c2, then Mn is totally umbilical or an isometric hypersurface with two
distinct principle curvature, one of which is simple.

In particular, when Nn+1
1 is de Sitter space Nn+1

1 (c) (c = −c1/n = c2 > 0),
from Theorem 1.4 we have the following corollary by means of the congruence
Theorem of Abe-Koike-Yamaguchi [1].

Corollary 1.5. Let Mn be a complete spacelike linear Weingarten hypersurface
immersed in Nn+1

1 (c) with R = aH + b satisfying a ̸= 0, b < c. Suppose
that the maximum of H can be attained on Mn. If the sectional curvature of
Mn is non-negative, then Mn is totally umbilical or H1(c1)× Sn−1(c2), where
1/c1 + 1/c2 = 1/c.

Theorem 1.6. Let Nn+1
1 be a locally symmetric Lorentz space satisfying (1.1)

and (1.2). Mn is a complete spacelike linear Weingarten hypersurface immersed
in Nn+1

1 with R = aH + b satisfying b < c2. If S ≤ 2
√
n− 1(2c2 + c1/n), then

either

(1) Mn is totally umbilical, or
(2) supS = 2

√
n− 1(2c2+c1/n). If supS is attained at some point in Mn,

then Mn is isometric to an isometric hypersurface with two distinct
principle curvature, one of which is simple.

2. Preliminaries

Let Mn be an n-dimensional spacelike hypersurface immersed in the Lorentz
space Nn+1

1 . We choose a local field of pseudo-Riemannian orthonormal frames
{e1, . . . , en+1} in Nn+1

1 such that, restricted to Mn, e1, . . . , en are tangent to
Mn, and the vector en+1 is normal to Mn. Let {ω1, . . . , ωn+1} be the dual
frame field. In this paper, we make the following convention on the range of
indices:

1 ≤ A, B, C ≤ n+ 1; 1 ≤ i, j, k ≤ n.

Then the structure equations of Nn+1
1 are given by

dωA = −
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0,

dωAB = −
∑
C

εCωAC ∧ ωCB − 1

2

∑
C,D

εCεDK̄ABCDωC ∧ ωD,
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where εi = 1, εn+1 = −1 and K̄ABCD denotes the components of the Riemann-
ian curvature tensor of Nn+1

1 . Then

K̄CD =
∑
B

εBK̄BCDB , K̄ =
∑
A

εAK̄AA.

Next we define the covariant derivative of KABCD by∑
E

εEK̄ABCD;EωE = dK̄ABCD −
∑
E

εE(K̄EBCDωEA + K̄AECDωEB

+ K̄ABEDωEC + K̄ABCEωED).

We restrict these forms to the spacelike hypersurface Mn in Nn+1
1 and have

ωn+1 = 0. The induced metric ds2 of M is written as ds2 =
∑

i ω
2
i . We may

put

ωn+1i =
∑
j

hijωj , hij = hji.(2.1)

The quadratic form B =
∑

i,j hijωi⊗ωj⊗en+1 is the second fundamental form

of Mn. We denote L = (hij)n×n and S =
∑

h2
ij . The mean curvature vector ξ

of Mn is defined by

ξ =
1

n

∑
i

hiien+1.

The length of the mean curvature vector is called the mean curvature of Mn,
denote by H. When ξ ̸= 0, we choose en+1 to assure H = 1

n

∑
i h

n+1
ii > 0.

We can obtain the structure equations of Mn

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

and the Gauss equation

Rijkl = K̄ijkl − (hilhjk − hikhjl) ,(2.2)

where {Rijkl} is the component of the curvature tensor of Mn. Let Rij and
R denote the components of the Ricci curvature and the normalized scalar
curvature of Mn respectively. From (2.2) we have

Rik =
∑
j

K̄jikj − nHhik +
∑
j

hijhjk,(2.3)

n(n− 1)R =
∑
i,j

K̄jiij − n2H2 + S.(2.4)

Let hijk denote the covariant derivative of hij so that∑
k

hijkωk = dhij −
∑
k

hkjωki −
∑
k

hikωkj .
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Then by exterior differentiation of (2.1), we obtain the Codazzi equation

hijk = hikj + K̄n+1ijk.(2.5)

Next, we define the second covariant derivative of hij by∑
l

hijklωl = dhijk −
∑
m

hmjkωmi −
∑
m

himkωmj −
∑
m

hijmωmk.

By exterior differentiation of (2.5), we can get the following Ricci identity

hijkl − hijlk = −
∑
m

(hmjRmikl + himRmjkl).(2.6)

Restricting the covariant derivative K̄ABCD;E of K̄ABCD onMn, then K̄n+1ijk;l

is given by
(2.7)
K̄(n+1)ijk;l = K̄(n+1)ijkl + K̄(n+1)i(n+1)khjl + K̄(n+1)ij(n+1)hkl + K̄mijkhml,

where K̄(n+1)ijkl denotes the covariant derivative of K̄(n+1)ijk as a tensor on
Mn.

The Laplacian of hij is defined by △hij =
∑

k hijkk. From (2.5) and (2.6)
we obtain
(2.8)

△hij = nHij +
∑
i,j,k

(K̄n+1kikj + K̄n+1ijkk)−
∑

i,j,k,m

(hmkRmijk + himRmkjk).

Since 1
2∆S =

∑
i,j,k (hijk)

2
+
∑

i,j hij∆hij , then it follows from (2.7) and (2.8)
that

1

2
△S

(2.9)

=
∑
i,j,k

h2
ijk +

∑
i,j,k

nhijHij +
∑
i,j

hij(K̄n+1ijk;k + K̄n+1kik;j)

− (S
∑
k

K̄n+1kn+1k + nH
∑
i,j

hijK̄n+1ijn+1)

−
∑

i,j,k,m

(hijhmkK̄mijk + hijhmjK̄mkik + hijhmkRmijk + hijhimRmkjk).

Let T =
∑

i,j Tijωiωj be a symmetric tensor on Mn defined by

Tij = nHδij − hij .

We introduce an operator 2 associated to T acting on f ∈ C2(Mn) by

2f =
∑
i,j

Tijfij =
∑
i,j

(nHδij − hij)fij .(2.10)
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Setting f = nH in (2.10) and from (2.4) we obtain

2(nH) =
∑
i,j

(nHδij − hij)(nH)ij

=
∑
i

(nH)(nH)ii −
∑
i,j

nhijHij(2.11)

=
1

2
∆(nH)2 −

∑
i

(nHi)
2 −

∑
i,j

nhijHij

=
1

2
∆S − 1

2
n(n− 1)∆R− n2|∇H|2 −

∑
i,j

nhijHij .

We introduce another operator

L = 2+
n− 1

2
a∆.

Then it follows from R = aH + b and (2.11) that

L(nH) = 2(nH) +
n− 1

2
a∆(nH)

= 2(nH) +
1

2
n(n− 1)△R(2.12)

=
1

2
∆S − n2|∇H|2 −

∑
i,j

nhijHij .

Substituting (2.9) into (2.12) we have

L(nH)

(2.13)

=
∑
i,j,k

h2
ijk − n2|∇H|2 +

∑
i,j,k

hij(K̄n+1ijk;k + K̄n+1kik;j)

− (S
∑
k

K̄n+1kn+1k + nH
∑
i,j

hijK̄n+1ijn+1)

−
∑

i,j,k,m

(hijhmkK̄mijk + hijhmjK̄mkik + hijhmkRmijk + hijhimRmkjk).

Lemma 2.1 ([16]). Let µi (1 ≤ i ≤ n) be real numbers such that
∑

i µi = 0
and

∑
i µ

2
i = β2, where β = constant ≥ 0. Then

− n− 2√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤ n− 2√

n(n− 1)
β3(2.14)

and the equality holds if and only if at least (n− 1) of the µi are equal.

Proposition 2.2. Let Mn be an n-dimensional spacelike linear Weingarten
hypersurface immersed in a locally symmetric Lorentz space Ln+1 satisfying
(1.1) and (1.2) with R = aH + b. If a ̸= 0, b < c2, then L is elliptic.
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Proof. If H = 0, we have R = b < c2. It follows from (2.4) that S = n(n −
1)b−

∑
ij K̄ijij ≤ n(n− 1)(b− c2) < 0. This is impossible. Therefore we have

H > 0. It follows from (2.4) and R = aH + b that

S = n2H2 + n(n− 1)(aH + b)−
∑
i,j

K̄jiij ,(2.15)

then

a =
1

n(n− 1)H

S − n2H2 − n(n− 1)b+
∑
i,j

K̄jiij

 .(2.16)

We choose a local frame of orthonormal vector fields {ei} such that hij = λiδij .
For any i, from (2.16) we have

nH − λi +
n− 1

2
a

= nH − λi +
1

2nH

S − n2H2 − n(n− 1)b+
∑
i,j

K̄jiij

(2.17)

=

1

2
(nH)2 − nHλi +

1

2
S +

1

2

∑
i,j

K̄jiij −
1

2
n(n− 1)b

 (nH)−1.

Since K̄jiij ≥ c2, we have

nH − λi +
n− 1

2
a

≥

1

2
(
∑
j

λj)
2 − λi

∑
j

λj +
1

2

∑
j

λ2
j +

1

2
n(n− 1)(c2 − b)

 (nH)−1

=

∑
j

λ2
j +

1

2

∑
l ̸=j

λlλj − λi

∑
j

λj +
1

2
n(n− 1)(c2 − b)

 (nH)−1

=

∑
i ̸=j

λ2
j +

1

2

∑
l ̸=j,l,j ̸=i

λlλj +
1

2
n(n− 1)(c2 − b)

 (nH)−1

=
1

2

∑
i ̸=j

λ2
j + (

∑
j ̸=i

λj)
2 + n(n− 1)(c2 − b)

 (nH)−1.

It follows from b < c2 that

nH − λi +
n− 1

2
a > 0.(2.18)

Thus L is an elliptic operator. □



278 DAN YANG

Proposition 2.3. Let Mn be an n-dimensional spacelike linear Weingarten
hypersurface immersed in a locally symmetric Lorentz space Ln+1 satisfying
(1.1) and (1.2) with R = aH + b. If (n− 1)a2 + 4n(c2 − b) ≥ 0, then we have∑

i,j,k

h2
ijk ≥ n2|∇H|2.(2.19)

Moreover, suppose that the equality holds on Mn in (2.19), then H is constant.

Proof. From (2.4) and R = aH + b, we have

S = n2H2 + n(n− 1)(aH + b)−
∑
i,j

K̄jiij .(2.20)

Since KABCD;E = 0, taking the covariant derivative of (2.20), we have

2
∑
i,j

hijhijk = Sk =
(
2n2H + n(n− 1)a

)
Hk(2.21)

for every k. Hence, by Cauchy-Schwartz’s inequality, we have∑
i,j

h2
ij

∑
i,j,k

h2
ijk ≥ (n2H +

1

2
n(n− 1)a)2|∇H|2,(2.22)

that is

S
∑
i,j,k

h2
ijk ≥ (n2H +

1

2
n(n− 1)a)2|∇H|2.(2.23)

On the other hand, it follows from (2.20) that(
n2H +

1

2
n(n− 1)a

)2

− n2S

= n2
(
n2H2 + n(n− 1)Ha− S

)
+

1

4
n2(n− 1)2a2

= n2
∑
i,j

Kjiij − n3(n− 1)b+
1

4
n2(n− 1)2a2

≥ 1

4
n2(n− 1)

(
(n− 1)a2 + 4n(c2 − b)

)
.(2.24)

Since (n− 1)a2 + 4n(c2 − b) ≥ 0, we have(
n2H +

1

2
n(n− 1)a

)2

≥ n2S.(2.25)

It follows from (2.23) and (2.25) that

S
∑
i,j,k

h2
ijk ≥ (n2H +

1

2
n(n− 1)a)2|∇H|2 ≥ n2S|∇H|2.(2.26)

Hence either S = 0 and
∑

i,j,k h
2
ijk = n2|∇H|2 or

∑
i,j,k h

2
ijk ≥ n2|∇H|2.
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We suppose
∑

i,j,k h
2
ijk = n2|∇H|2 on Mn. Then equalities in (2.22), (2.23),

(2.24), (2.25) and (2.26) hold.
If (n− 1)a2 + 4n(c2 − b) > 0, then (n2H + 1

2n(n− 1)a)2 > n2S from (2.24).
Since the second equality in (2.26) holds, we have |∇H| = 0 and hence H is
constant on Mn.

If (n − 1)a2 + 4n(c2 − b) = 0, since the equality holds in (2.24), we have
(n2H + 1

2n(n− 1)a)2 = n2S. This together with (2.21) forces that

S2
k = 4n2SH2

k , k = 1, . . . , n.(2.27)

Since the equality holds in (2.22), there exists a real function ck on Mn such
that

hijk = ckhij , i, j = 1, . . . , n,(2.28)

for every k. Taking the sum on both sides of equation (2.28) with respect to
i = j, we get

Hk = ckH, k = 1, . . . , n.(2.29)

From (2.28), we have

Sk = 2
∑
i,j

hijhijk = 2ckS, k = 1, . . . , n.(2.30)

Multiplying both sides of equations in (2.30) by H and by using (2.29), we have

HSk = 2HkS, k = 1, . . . , n.(2.31)

It follows from (2.27) and (2.31) that

H2
kS = H2

kn
2H2, k = 1, . . . , n.(2.32)

Hence we have

|∇H|2(S − n2H2) = 0.(2.33)

Suppose that H is not constant on Mn, we assert that S = n2H2. In fact,
since H is not constant, we have that |∇H| is not vanishing identically on
Mn. We denote M0 = {x ∈ M | |∇H| ̸= 0}, then M0 is open in M . Let
T = S−n2H2, it follows form (2.33) that T = 0 in M0. From the continuity of
T , we have that T = 0 on the closure cl(M0) of M0. If M/cl(M0) ̸= ∅, then H
is constant in M/cl(M0). It follows from (2.20) that S is constant and hence T
is constant in M/cl(M0). From the continuity of T , we have that T = 0 on Mn

and hence S = n2H2. It follows from (2.4) that n(n− 1)R =
∑

i,j K̄jiij . Since∑
i,j K̄jiij is constant, we have that R is constant and henceH is constant. This

is contradict to the assumption. Hence the mean curvature H is constant. □

Lemma 2.4 ([7]). Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below. Let f be a C2-function which is bounded from
above. Then there exists a sequence {qk} such that

lim
k→∞

f(qk) = sup f, lim
k→∞

∥∇f(qk)∥ = 0, lim sup
k→∞

Lf(qk) ≤ 0,
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where Lf =
∑

bjfjj, bj ≥ 0 is bounded.

3. Proof of theorems

Proof of Theorem 1.4. We choose e1, . . . , en such that hij = λiδij , then (2.13)
becomes

L(nH) =
∑
i,j,k

h2
ijk − n2|∇H|2 − S

∑
k

K̄n+1kn+1k − nH
∑
i

λiK̄n+1iin+1

− 1

2

∑
i,k

(λi − λk)
2(K̄ikik +Rikik).(3.1)

Next we estimate the right hand of formula (3.1) one by one. Using (1.1) and
(1.2), we have

− S
∑
k

K̄n+1kn+1k − nH
∑
i

λiK̄n+1iin+1

=
∑
k

(S − nHλk)
c1
n

= c1(S − nH2),(3.2)

and

−1

2

∑
i,k

(λi − λk)
2(K̄ikik +Rikik) ≥ 1

2

∑
i,k

(λi − λk)
2(c2 +Kmin)

= n(c2 +Kmin)(S − nH2),(3.3)

whereKmin denotes the infimum of the sectional curvature ofMn. Substituting
(3.2), (3.3) into (3.1) and from Proposition 2.3, we get

(3.4) L(nH) ≥
∑
i,j,k

h2
ijk − n2|∇H|2 + n(Kmin +

c1
n

+ c2)(S − nH2) ≥ 0,

here we used the assumption Kmin ≥ − c1
n − c2. Since L is elliptic and H can

obtain its maximum on M , we deduce that H is constant and the equalities in
(3.4) hold. Thus ∑

i,j,k

h2
ijk = n2|∇H|2 = 0,(3.5)

and

(Kmin +
c1
n

+ c2)(S − nH2) = 0.(3.6)

It follows from (3.6) that either S = nH2 and Mn is totally umbilical or
Kmin+

c1
n +c2 = 0. In the latter case, since the equality in (3.3) holds, we have

that Rjiij = Kmin = − c1
n − c2 and K̄jiij = c2. It follows from Gauss equation

(2.2) that, for any i, j

λiλj =
c1
n

+ 2c2.(3.7)
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If c1
n +2c2 = 0, then all the λi are zero, and Mn is totally geodesic. Otherwise,

if c1
n +2c2 ̸= 0, we conclude that Mn has at most two distinct principal curva-

ture. In fact, without loss of generality, we assume that Mn has three distinct
principle curvature λi1 , λi2 , λi3 . Then λi1λi2 = λi2λi3 = c1

n + 2c2 and hence
λi1 = λi3 . This is a contradiction. So Mn has at most two distinct principal
curvature. If all the principle curvatures are equal, we have that Mn is totally
umbilical. Otherwise, without loss of generality, we may suppose that

λ1 = · · · = λk = λ, λk+1 = · · · = λn = µ

for some k = 1, . . . , n− 1, and λµ = c1
n +2c2. We can prove k = 1 or n− 1. In

fact, if 1 < k < n− 1, it follows from (3.7) that λ2 = µ2 = λµ = c1
n +2c2. This

is contradict to λ ̸= µ. Hence we have k = 1 or n− 1.
On the other hand, it follows from (3.5) that λi is constant for every i. Hence

Mn is an isometric hypersurface with two distinct principal curvatures, one of
which is simple. This completes the proof of Theorem 1.4. □

Proof of Theorem 1.6. When the constant a vanishes, Theorem 1.3 of [21] im-
plies that Theorem 1.6 holds. Next we assume that a is not zero. It follows
from Gauss formula (2.2) that (2.13) becomes

L(nH) =
∑
i,j,k

h2
ijk − n2|∇H|2 − S

∑
k

K̄n+1kn+1k − nH
∑
i

λiK̄n+1iin+1

−
∑
i,k

(λi − λk)
2K̄ikik − nH

∑
j

λ3
j + S2.(3.8)

Let µi = λi −H and |Φ|2 =
∑

i µ
2
i , we get∑

i

µi = 0, |Φ|2 = S − nH2,
∑
i

λ3
i =

∑
i

µ3
i + 3H|Φ|2 + nH3.

Mn is totally umbilical if and only if |Φ|2 = 0. It follows from Lemma 2.1 that

−nH
∑
i

λ3
i ≥ −n|H| n− 2√

n(n− 1)
|Φ|3 + 3H|Φ|2 + nH3.(3.9)

From (3.2), we have

−S
∑
k

K̄n+1kn+1k − nH
∑
i

λiK̄n+1iin+1 = c1|Φ|2.(3.10)

It follows from condition (1.2) that

−
∑
i,k

(λi − λk)
2K̄ikik ≥

∑
i,k

(λi − λk)
2c2 = nc2|Φ|2.(3.11)

Substituting (3.9), (3.10) and (3.11) into (3.8) and from Proposition 2.3, we
get

(3.12) L(nH) ≥ |Φ|2(2nc2 + c1 − nH2 − n(n− 2)√
n(n− 1)

|H||Φ|+ |Φ|2).



282 DAN YANG

Consider the quadratic form

Q(x, y) = −x2 − n− 2√
n− 1

xy + y2.(3.13)

By the orthogonal transformation

(∗)

{
u = 1√

2n

{
(1 +

√
n− 1)y + (1−

√
n− 1)x)

}
,

v = 1√
2n

{
(1 +

√
n− 1)y + (1 +

√
n− 1)x)

}
,

the equation (3.13) becomes

Q(x, y) =
n

2
√
n− 1

(u2 − v2).(3.14)

Let x =
√
nH2, y = |Φ|. Then u2 + v2 = x2 + y2 = |Φ|2 + nH2 = S. Hence we

have

2nc2 + c1 +Q(x, y) = 2nc2 + c1 −
n

2
√
n− 1

(u2 + v2) +
n√
n− 1

u2

≥ 2nc2 + c1 −
n

2
√
n− 1

S.(3.15)

It follows from (3.12) and (3.15) that

L(nH) ≥ |Φ|2(2nc2 + c1 −
n

2
√
(n− 1)

S).(3.16)

Since S ≤ 2
√
n− 1(2c2 + c1/n), then λi are bounded. It follows from (2.20)

that

(3.17) 2
√
n− 1(2c2 + c1/n) ≥ n2H2 + n(n− 1)(aH + b)−

∑
i,j

K̄jiij .

Since K̄jiij is constant, from (3.17) we have that H is bounded. Hence the
Ricci curvature of Mn is bounded from below and nH−λi+

n−1
2 a is bounded.

It follows from Lemma 2.4 that there exists a sequence {qk} such that

lim
k→∞

(nH)(qk) = sup(nH), lim
k→∞

∥∇(nH)(qk)∥ = 0, lim sup
k→∞

L(nH)(qk) ≤ 0.

It follows from (2.20) and
∑n

i,j=1 K̄ijji = constant that limk→∞ S(qk) = supS.

Evaluating (3.16) at points qk, we have

0 ≥ (supS − n supH2)(2nc2 + c1 −
n

2
√

(n− 1)
supS).

Since S ≤ 2
√
n− 1(2c2 + c1/n), we have

sup(S − nH2)(2nc2 + c1 −
n

2
√
(n− 1)

supS) = 0.(3.18)

If sup(S − nH2) = 0, then S = nH2 and Mn is totally umbilical.
If supS = 2

√
n− 1(2c2+c1/n) and supS is attained on Mn, then supH can

be attained on Mn. This together with L(nH) ≥ 0 forces that H is constant.
Then all the inequalities to obtain (3.16) become equalities. Since the equality
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in Lemma 2.1 holds, we have that Mn has two distinct principal curvature.
This completes the proof of Theorem 1.6. □
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