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SHADOWABLE CHAIN TRANSITIVE SETS OF

C1-GENERIC DIFFEOMORPHISMS

Keonhee Lee and Xiao Wen

Abstract. We prove that a locally maximal chain transitive set of a
C1-generic diffeomorphism is hyperbolic if and only if it is shadowable.

1. Introduction

Transitive sets, homoclinic classes and chain components of a diffeomor-
phism f on a closed C∞ manifold M are natural candidates to replace the
Smale’s hyperbolic basic sets in non-hyperbolic theory of differentiable dynam-
ical systems. Many recent papers have explored their hyperbolic-like properties
such as dominated splitting, partial hyperbolicity and hyperbolicity.

For instance, Sakai et al. proved in [7, 10] that if the chain component Cf (p)
of a diffeomorphism f containing a hyperbolic periodic point p is robustly
shadowable (i.e., there is a C1 neighborhood U(f) of f such that the chain
component Cg(pg) of g ∈ U(f) containing the continuation pg is shadowable
for g), then Cf (p) is hyperbolic. Moreover Lee et al. in [6, 8, 9, 11] obtained
sufficient conditions for the homoclinic classes to be hyperbolic. It is known
by Bonatti and Crovisier in [3] that, in the C1-generic context, every chain
component with a periodic point is a homoclinic class.

In this paper, we study the hyperbolicity of shadowable chain transitive sets
of C1-generic diffeomorphisms f on a closed C∞ manifold M . Note that every
transitive set, homoclinic class and chain component of f are examples of chain
transitive sets of f .

Let Diff(M) be the space of diffeomorphisms of M endowed with the C1-
topology. Denote by d the distance on M induced from a Riemannian metric
∥ · ∥ on the tangent bundle TM . Let f ∈ Diff(M). For δ > 0, a sequence of
points {xi}bi=a in M (−∞ ≤ a < b ≤ ∞) is called a δ-pseudo-orbit (or δ-chain)
of f if d(f(xi), xi+1) < δ for all a ≤ i ≤ b − 1. For a closed f -invariant set
Λ ⊂ M , we say that f has the shadowing property (or Λ is shadowable for f)
if for every ϵ > 0, there is δ > 0 such that for any δ-pseudo-orbit {xi}bi=a ⊂ Λ
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of f (−∞ ≤ a < b ≤ ∞), there is y ∈ M satisfying d(f i(y), xi) < ϵ for all
a ≤ i ≤ b − 1. In this case, {xi}bi=a is said to be ϵ-shadowed by the point
y. Notice that only δ-pseudo-orbits of f contained in Λ are allowed to be
ϵ-shadowed, but the shadowing point y ∈ M is not necessarily contained in Λ.

Givenf ∈ Diff(M), a closed f -invariant set Λ ⊂ M is said to be chain
transitive if for any points x, y ∈ Λ and δ > 0, there exists a δ-pseudo orbit
{xi}bδi=aδ

⊂ Λ (aδ < bδ) of f such that xaδ
= x and xbδ = y. For given

points x, y ∈ M , we write x ⇝ y if for any δ > 0, there is a δ-pseudo-orbit
{xi}bδi=aδ

(aδ < bδ) of f such that xaδ
= x and xbδ = y. The set {x ∈ M : x⇝ x}

is called the chain recurrent set of f and is denoted by CR(f). Define a relation
∼ on CR(f) by x ∼ y if x ⇝ y and y ⇝ x. It is clear that ∼ is an equivalent
relation on CR(f). The equivalence classes are called the chain components
(or chain recurrent classes) of f . Clearly every chain component is a maximal
chain transitive set; that is, a set which are maximal in the family of all chain
transitive sets of f ordered by inclusion.

A closed f -invariant set Λ ⊂ M is said to be transitive if there is a point x ∈ Λ
such that the ω-limit set ω(x) of x coincides with Λ; and Λ is said to be locally
maximal if there is an open neighborhood V of Λ such that Λ =

∩
n∈Z f

n(V ).
Recall that a closed f -invariant set Λ ⊂ M is called hyperbolic if the tangent

bundle TΛM has a Df -invariant splitting Es ⊕ Eu and there exist constants
C > 0, 0 < λ < 1 such that

∥Dfn|Es(x)∥ ≤ Cλn

and

∥Df−n|Eu(x)∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. Moreover, we say that Λ admits a dominated splitting
if the tangent bundle TΛM has a Df -invariant splitting E ⊕ F and there exist
constants C > 0, 0 < λ < 1 such that

∥Dfn|E(x)∥ · ∥Df−n|F (fn(x))∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0.
We say that a subset R ⊂ Diff(M) is residual if R contains the intersection

of a countable family of open and dense subsets of Diff(M); in this case R is
dense in Diff(M). A property (P) is said to be (C1)-generic if (P) holds for all
diffeomorphisms which belong to some residual subset of Diff(M).

Recently Abdenur and Dı́az [2] obtained a necessary and sufficient condition
for a locally maximal transitive set Λ of a C1-generic diffeomorphism f to be
hyperbolic as follow: either Λ is hyperbolic, or there are a C1-neighborhood
U(f) of f and a neighborhood V of Λ such that every g ∈ U(f) does not have
the shadowing property on the neighborhood V .

The main result of this paper is the following.

Theorem A. A locally maximal chain transitive set of a C1-generic diffeo-
morphism is hyperbolic if and only if it is shadowable.
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It is explained in [1] that every C1-generic diffeomorphism comes in one of
two types: tame diffeomorphisms, which have a finite number of homoclinic
classes and whose nonwandering sets admit partitions into a finite number
of disjoint transitive sets; and wild diffeomorphisms, which have an infinite
number of (disjoint and different) homoclinic classes and whose nonwandering
sets admit no such partitions. It is easy to show that if a diffeomorphism has
a finite number of chain components, then every chain component is locally
maximal, and so every chain component of a tame diffeomorphism is locally
maximal. Hence we can get the following result by Theorem A.

Theorem B. There is a residual set R ⊂ Diff(M) such that if f ∈ R is tame,
then the following two conditions are equivalent:

(1) CR(f) is hyperbolic.
(2) CR(f) is shadowable.

2. Proof of Theorem A

In dynamical systems the periodic orbits play an important role. Some dy-
namical invariants are associated to them; in general, they also can be followed
after perturbation of the dynamics. Pugh’s closing lemma implies that any
transitive set Λ of a C1-generic diffeomorphism f is the Hausdorff limit of a
sequence of periodic orbits Pn of f : i.e., limn→∞ Pn = Λ.

Recently Crovisier [4] provides us with a remarkable result for the following
question, in terms of chain transitivity: what is the class of compact sets that
may be approximated by a sequence of periodic orbits? He proved that the
chain transitive sets of C1-generic diffeomorphisms are approximated in the
Hausdorff topology by periodic orbits.

First we state some results which will be used in the proof of Theorem A.

Lemma 2.1. There is a residual set R1 ⊂ Diff(M) such that every f ∈ R1

satisfies the following properties:

(1) Every periodic point of f is hyperbolic and all their invariant manifolds
are transverse (Kupka-Smale).

(2) A compact f -invariant set Λ is chain transitive if and only if Λ is the
Hausdorff limit of a sequence of periodic orbits of f ([4]).

Lemma 2.2. There is a residual set R2 ⊂ Diff(M) such that every f ∈ R2

satisfies the following property: For any closed f -invariant set Λ ⊂ M , if there
are a sequence of diffeomorphisms fn converging to f and a sequence of hyper-
bolic periodic orbits Pn of fn with index k verifying limn→∞ Pn = Λ, then there
is a sequence of hyperbolic periodic orbits Qn of f with index k such that Λ is
the Hausdorff limit of Qn, where the index of a hyperbolic periodic orbit P is
the dimension of the stable manifold of P .
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Proof. Let K(M) be the space of all nonempty compact subsets of M with the
Hausdorff metric, and take a countable basis β = {Vn}∞n=1 of K(M). For each
pair (n, k) with n ≥ 1 and k ≥ 0, we denote by Hn,k the set of diffeomorphisms
f such that f has a C1-neighborhood U in Diff(M) with the following property:
for every g ∈ U , there is a hyperbolic periodic orbit Q ∈ Vn of g with index k.
Let Nn,k be the set of diffeomorphisms f such that f has a C1-neighborhood U
in Diff(M) with the following property: for every g ∈ U , there is no hyperbolic
periodic orbit Q ∈ Vn of g with index k. It is clear that Hn,k ∪ Nn,k is
open in Diff(M). To show that Hn,k ∪ Nn,k is a dense in Diff(M), we take
f ∈ Diff(M) − Nn,k. Then for any C1-neighborhood U of f , there is g ∈
U such that g has a hyperbolic periodic orbit Q ∈ Vn with index k. The
hyperbolicity of Q for g implies that g ∈ Hn,k. This means that f ∈ Hn,k, and

so Hn,k ∪Nn,k = Diff(M).
Let

R2 =
∩

n∈Z+,k=0,...,dim(M)

Hn,k ∪Nn,k.

Then R2 is a residual subset of Diff(M). Let f ∈ R2, and let Λ be a closed
f -invariant subset of M . Assume that there is a sequence of diffeomorphisms
fn converging to f and a sequence of periodic orbits Pn of fn with index k such
that Λ is the Hausdorff limit of Pn. For any neighborhood V of Λ in K(M),
take Vm ∈ β such that Λ ∈ Vm ⊂ V. Then we have f /∈ Nm,k, and so f ∈ Hm,k.
Hence f has a periodic orbit, say Qm, in Vm with index k. This completes the
proof. □

We say that a point x in M is well closable for f ∈ Diff(M) if for any ε > 0,
there are g ∈ Diff(M) with dC1(g, f) < ε and a periodic point p of g such that
d(fn(x), gn(p)) < ε for all 0 ≤ n ≤ π(p), where π(p) is the period of p. Let∑

(f) denote the set of well closable points of f . Mane’s ergodic closing lemma
[6] says that µ(

∑
(f)) = 1 for any f -invariant Borel probability measure µ on

M .
Let M be the space of all Borel measures µ on M endowed with the weak*

topology. It is easy to check that, for any ergodic measure µ ∈ M of f , µ is
supported on a periodic orbit P = {p, f(p), . . . , fπ(p)−1(p)} of f if and only if

µ =
1

π(p)

π(p)−1∑
i=0

δfi(p),

where δx is the atomic measure respecting x.
The following lemma comes from the Mane’s ergodic closing lemma in [6]

which gives the measure theoretical viewpoint on the approximation by periodic
orbits.

Lemma 2.3. There is a residual set R3 ⊂ Diff(M) such that every f ∈ R3

satisfies the following property: Any ergodic invariant measure µ of f is the
limit of sequence of ergodic invariant measures supported by periodic orbits Pn
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of f in the weak* topology. Moreover, the orbits Pn converges to the support of
µ in the Hausdorff topology.

Proof. Let β = {Vn}∞n=1 be a countable basis of M. For each positive in-
teger n, we denote by Hn the set of diffeomorphisms f such that f has a
C1-neighborhood U in Diff(M) with the following property: for any g ∈ U ,
there is a periodic point p of g such that

1

π(p)

π(p)−1∑
i=0

δgi(p) ∈ Vn.

Let Nn be the set of diffeomorphisms f such that f has a C1-neighborhood
U in Diff(M) with the following property: for any g ∈ U , there is no periodic

point p of g such that 1
π(p)

∑π(p)−1
i=0 δgi(p) ∈ Vn. It is obvious that Hn ∪ Nn

is open in Diff(M). To show that Hn ∪ Nn is a dense in Diff(M), we take
f ∈ Diff(M) − Nn. Then for any C1-neighborhood U of f , there is g ∈ U
such that g has a periodic point p such that 1

π(p)

∑π(p)−1
i=0 δgi(p) ∈ Vn. With a

small perturbation, we may assume that the periodic orbit is hyperbolic. The
hyperbolicity of p implies that g ∈ Hn. This means that f ∈ Hn, and so
Hn ∪Nn is dense in Diff(M).

Let
R3 =

∩
n∈Z+

Hn ∪Nn.

Then R3 is a residual subset of Diff(M). Let f ∈ R3, and let µ be an ergodic
invariant measure of f . For any neighborhood V of µ in M, there is Vn ∈ β
such that µ ∈ Vn ⊂ V. By the Mane’s ergodic closing lemma and Birkhoff
ergodic theorem, there is a well closable point x in the support of µ such that µ
is the limit point of 1

n

∑n−1
i=0 δfi(x) under the weak* topology and the support

of µ equal the closure of the positive orbit of x. Since x is well closable, one can
see that f /∈ Nn, and so f ∈ Hn. Hence there is a periodic point, say pn, of f

such that 1
π(pn)

∑π(pn)−1
i=0 δfi(pn) ∈ Vn ⊂ V. This means that there is an ergodic

invariant measure of f in V whose support is a periodic orbit Pn = {f i(pn)}i∈Z
of f . By our construction, we can see that the support of µ is the Hausdorff
limit of Pn, and so completes the proof. □

In the following lemma, we can see that every periodic point of a shadowable
chain transitive set Λ of f ∈ R1 has the same index; that is, the dimensions of
stable manifolds of all periodic points in Λ are the same.

Lemma 2.4. Let f ∈ R1, and Λ be a shadowable chain transitive set of f .
Then all periodic points in Λ have the same index.

Proof. Let p and q be two periodic points of f in Λ, and let ε > 0 be a small
constant such that the local stable manifold W s

ε (p) and the local unstable
manifold Wu

ε (q) are well defined. Take a constant δ > 0 such that every δ-
pseudo orbit in Λ is ε-shadowed by a point in M . Since Λ is chain transitive,
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there is a δ-pseudo orbit {x0, x1, . . . , xn} in Λ such that x0 = q and xn = p.
Construct a δ-pseudo orbit ξ in Λ as follows:

ξ = {. . . , f−2(q), f−1(q), q, x1, . . . , p, f(p), f
2(p), . . .}.

Then there is an orbit Orb(y) which ε shows ξ, where Orb(y) = {fn(y) : n ∈ Z}.
Since Orb(y)∩W s

ε (p) ̸= ∅ and Orb(y)∩Wu
ε (q) ̸= ∅, we have y ∈ W s(p)∩Wu(q).

This implies that the index of p and index of q should be same. Otherwise it will
contradicts the fact that the stable manifold W s(p) and the unstable manifold
Wu(q) are transverse, and so completes the proof. □

Now we define the residual subset R of Diff(M) required in the statement
of Theorem A as follow: R = R1 ∩ R2 ∩ R3. Then we have the following
proposition which is crucial to prove Theorem A.

Proposition 2.1. Let f ∈ R, and let Λ be a shadowable chain transitive set
of f which is locally maximal. Then there exist constants m > 0 and 0 < λ < 1
such that for any periodic point p ∈ Λ,

π(p)−1∏
i=0

∥Dfm|Es(fim(p))∥ < λπ(p),

π(p)−1∏
i=0

∥Df−m|Eu(f−im(p))∥ < λπ(p)

and

∥Dfm|Es(p)∥ · ∥Df−m|Eu(fm(p))∥ < λ2,

where π(p) denote the period of p.

Proof. Since f ∈ R2, and all periodic points in Λ have the same index and Λ
is locally maximal, we can choose a C1-neighborhood U(f) of f and a neigh-
borhood U of Λ such that every g ∈ U(f) has no nonhyperbolic periodic orbit
which is contained in U . Suppose not. Then, for any C1-neighborhood V(f)
of f and a neighborhood V of Λ, we can take g1, g2 ∈ V(f) and hyperbolic pe-
riodic orbits Q1 and Q2 (in V ) of g1 and g2, respectively, such that indexQ1 ̸=
indexQ2. Consequently we can select two sequences of diffeomorphisms gn
and g

′

n which converge to f , and two sequences of hyperbolic periodic orbits

Qn, Q
′

n of gn and g
′

n, respectively, such that limn→∞ Qn = Λ = limn→∞ Q
′

n and

indexQn ̸= indexQ
′

n for each n ∈ N . Without loss of generality, we may assume

that indexQn = indexQm and indexQ
′

n = indexQ
′

m for all m,n ∈ N by taking
a subsequence if necessary. From Lemma 2.2, we can choose two sequences
of periodic orbits Pn and P

′

n of f such that indexPn =index Qn, indexP
′

n =

indexQ
′

n and Λ is the Hausdorff limit of {Pn} and {P ′

n}, respectively. Since Λ is

locally maximal, we may assume that Pn, P
′

n ⊂ Λ for sufficiently large n. Since

index Pn ̸= index P
′

n, we arrive at the contradiction by Lemma 2.4. Moreover
we may assume that all of the indices of periodic orbits of g ∈ U(f) are the
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same. Hence we can apply Lemma II.3 in [6], and so we get the constants
K > 0,m0 ∈ Z+ and 0 < λ < 1 such that for any periodic point p ∈ Λ with
π(p) ≥ K,

π(p)−1∏
i=0

∥Dfm0 |Es(fim0 (p))∥ < λπ(p),

π(p)−1∏
i=0

∥Df−m0 |Eu(f−im0 (p))∥ < λπ(p)

and

∥Dfm0 |Es(p)∥ · ∥Df−m0 |Eu(fm0 (p))∥ < λ2.

Let Λ0 be the set of all periodic points in Λ whose periods are less than K.
Since every periodic point of f is hyperbolic, there are only a finite number of
periodic points in Λ0, and so Λ0 is hyperbolic for f . Let k be a positive integer
such that ∥Dfkm0 |Es(x)∥ < λ and ∥Df−km0 |Eu(x)∥ < λ for all x ∈ Λ0. If we
let m = km0, then we know that m and λ are the required constants. □

End of the proof of Theorem A. By Lemma 2.1 and the third property of Pro-
position 2.1, we can see that Λ admits a dominated splitting TΛM = E ⊕ F
which satisfies E(p) = Es(p) and F (p) = Eu(p) for every periodic point p ∈ Λ.
To complete the proof of Theorem A, it is enough to show thatDf is contracting
on E and Df is expanding on F if Λ is shadowable for f . Suppose Df is not
contracting on E. Then, by a simple calculation, we can find a “bad” point
b ∈ Λ such that

∥Dfk|E(b)∥ ≥ 1

for any k > 0. Denote by δx the atomic measure respecting x. Let us consider
a sequence { 1

n

∑n−1
i=0 δfim(b) : n ∈ Z+} in M, and take an accumulation point

µ ∈ M of the sequence. Then we can see that µ is a fm-invariant probability
measure on M with supp(µ) ⊂ Λ which satisfies

∫
log(∥Dfm|E(x)∥)df l

∗µ ≥ 0
for any l ∈ Z. Take

ν =
1

m

m−1∑
l=0

f l
∗µ.

We can easily see that ν is a f -invariant measure supported on Λ which satisfies∫
log(∥Dfm|E(x)∥)dµ ≥ 0. Note here that we can extend E continuously to the

whole manifold M . By the ergodic decomposition theorem, there is an ergodic
measure µ0 with supp(µ0) ⊂ Λ such that∫

log(∥Dfm|E(x)∥)dµ0 ≥ 0.

Then, by Lemma 2.3, we can take a sequence of ergodic f -invariant measures
µn such that the support of each µn is a periodic orbit Pn of f , {µn} converges
to µ0 and {Pn} converges to the support of µ0. Since Λ is locally maximal, we
may assume that every Pn is contained in Λ for sufficiently large n.
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If we apply Proposition 2.1, then we have∫
log(∥Dfm|E(x)∥)dµn < log λ

for sufficiently large n. Since µn converges to µ0 in the weak* topology, we
have ∫

log(∥Dfm|E(x)∥)dµn →
∫

log(∥Dfm|E(x)∥)dµ0

as n → ∞. Hence we get
∫
log(∥Dfm|E(x)∥)dµ0 < 0. The contradiction proves

that Df is contracting on E. Similarly we can show that Df is expanding on
F. □
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