SHADOWABLE CHAIN TRANSITIVE SETS OF C^{1}-GENERIC DIFFEOMORPHISMS

Keonhee Lee and Xiao Wen

Abstract. We prove that a locally maximal chain transitive set of a C^{1}-generic diffeomorphism is hyperbolic if and only if it is shadowable.

1. Introduction

Transitive sets, homoclinic classes and chain components of a diffeomorphism f on a closed C^{∞} manifold M are natural candidates to replace the Smale's hyperbolic basic sets in non-hyperbolic theory of differentiable dynamical systems. Many recent papers have explored their hyperbolic-like properties such as dominated splitting, partial hyperbolicity and hyperbolicity.

For instance, Sakai et al. proved in $[7,10]$ that if the chain component $C_{f}(p)$ of a diffeomorphism f containing a hyperbolic periodic point p is robustly shadowable (i.e., there is a C^{1} neighborhood $\mathcal{U}(f)$ of f such that the chain component $C_{g}\left(p_{g}\right)$ of $g \in \mathcal{U}(f)$ containing the continuation p_{g} is shadowable for g), then $C_{f}(p)$ is hyperbolic. Moreover Lee et al. in $[6,8,9,11]$ obtained sufficient conditions for the homoclinic classes to be hyperbolic. It is known by Bonatti and Crovisier in [3] that, in the C^{1}-generic context, every chain component with a periodic point is a homoclinic class.

In this paper, we study the hyperbolicity of shadowable chain transitive sets of C^{1}-generic diffeomorphisms f on a closed C^{∞} manifold M. Note that every transitive set, homoclinic class and chain component of f are examples of chain transitive sets of f.

Let $\operatorname{Diff}(M)$ be the space of diffeomorphisms of M endowed with the C^{1} topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle $T M$. Let $f \in \operatorname{Diff}(M)$. For $\delta>0$, a sequence of points $\left\{x_{i}\right\}_{i=a}^{b}$ in $M(-\infty \leq a<b \leq \infty)$ is called a δ-pseudo-orbit (or δ-chain) of f if $d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta$ for all $a \leq i \leq b-1$. For a closed f-invariant set $\Lambda \subset M$, we say that f has the shadowing property (or Λ is shadowable for f) if for every $\epsilon>0$, there is $\delta>0$ such that for any δ-pseudo-orbit $\left\{x_{i}\right\}_{i=a}^{b} \subset \Lambda$

Received July 14, 2010; Revised December 6, 2011.
2010 Mathematics Subject Classification. 37B20, 37C50, 37D30.
Key words and phrases. chain transitive, generic, hyperbolic, shadowable.
of $f(-\infty \leq a<b \leq \infty)$, there is $y \in M$ satisfying $d\left(f^{i}(y), x_{i}\right)<\epsilon$ for all $a \leq i \leq b-1$. In this case, $\left\{x_{i}\right\}_{i=a}^{b}$ is said to be ϵ-shadowed by the point y. Notice that only δ-pseudo-orbits of f contained in Λ are allowed to be ϵ-shadowed, but the shadowing point $y \in M$ is not necessarily contained in Λ.

Given $f \in \operatorname{Diff}(M)$, a closed f-invariant set $\Lambda \subset M$ is said to be chain transitive if for any points $x, y \in \Lambda$ and $\delta>0$, there exists a δ-pseudo orbit $\left\{x_{i}\right\}_{i=a_{\delta}}^{b_{\delta}} \subset \Lambda\left(a_{\delta}<b_{\delta}\right)$ of f such that $x_{a_{\delta}}=x$ and $x_{b_{\delta}}=y$. For given points $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta>0$, there is a δ-pseudo-orbit $\left\{x_{i}\right\}_{i=a_{\delta}}^{b_{\delta}}\left(a_{\delta}<b_{\delta}\right)$ of f such that $x_{a_{\delta}}=x$ and $x_{b_{\delta}}=y$. The set $\{x \in M: x \rightsquigarrow x\}$ is called the chain recurrent set of f and is denoted by $\mathcal{C} \mathcal{R}(f)$. Define a relation \sim on $\mathcal{C} \mathcal{R}(f)$ by $x \sim y$ if $x \rightsquigarrow y$ and $y \rightsquigarrow x$. It is clear that \sim is an equivalent relation on $\mathcal{C} \mathcal{R}(f)$. The equivalence classes are called the chain components (or chain recurrent classes) of f. Clearly every chain component is a maximal chain transitive set; that is, a set which are maximal in the family of all chain transitive sets of f ordered by inclusion.

A closed f-invariant set $\Lambda \subset M$ is said to be transitive if there is a point $x \in \Lambda$ such that the ω-limit set $\omega(x)$ of x coincides with Λ; and Λ is said to be locally maximal if there is an open neighborhood V of Λ such that $\Lambda=\bigcap_{n \in \mathbb{Z}} f^{n}(V)$.

Recall that a closed f-invariant set $\Lambda \subset M$ is called hyperbolic if the tangent bundle $T_{\Lambda} M$ has a $D f$-invariant splitting $E^{s} \oplus E^{u}$ and there exist constants $C>0,0<\lambda<1$ such that

$$
\left\|\left.D f^{n}\right|_{E^{s}(x)}\right\| \leq C \lambda^{n}
$$

and

$$
\left\|\left.D f^{-n}\right|_{E^{u}(x)}\right\| \leq C \lambda^{n}
$$

for all $x \in \Lambda$ and $n \geq 0$. Moreover, we say that Λ admits a dominated splitting if the tangent bundle $T_{\Lambda} M$ has a $D f$-invariant splitting $E \oplus F$ and there exist constants $C>0,0<\lambda<1$ such that

$$
\left\|\left.D f^{n}\right|_{E(x)}\right\| \cdot\left\|\left.D f^{-n}\right|_{F\left(f^{n}(x)\right)}\right\| \leq C \lambda^{n}
$$

for all $x \in \Lambda$ and $n \geq 0$.
We say that a subset $\mathcal{R} \subset \operatorname{Diff}(M)$ is residual if \mathcal{R} contains the intersection of a countable family of open and dense subsets of $\operatorname{Diff}(\mathrm{M})$; in this case \mathcal{R} is dense in $\operatorname{Diff}(M)$. A property (P) is said to be $\left(C^{1}\right)$-generic if (P) holds for all diffeomorphisms which belong to some residual subset of $\operatorname{Diff}(M)$.

Recently Abdenur and Díaz [2] obtained a necessary and sufficient condition for a locally maximal transitive set Λ of a C^{1}-generic diffeomorphism f to be hyperbolic as follow: either Λ is hyperbolic, or there are a C^{1}-neighborhood $\mathcal{U}(f)$ of f and a neighborhood V of Λ such that every $g \in \mathcal{U}(f)$ does not have the shadowing property on the neighborhood V.

The main result of this paper is the following.
Theorem A. A locally maximal chain transitive set of a C^{1}-generic diffeomorphism is hyperbolic if and only if it is shadowable.

It is explained in [1] that every C^{1}-generic diffeomorphism comes in one of two types: tame diffeomorphisms, which have a finite number of homoclinic classes and whose nonwandering sets admit partitions into a finite number of disjoint transitive sets; and wild diffeomorphisms, which have an infinite number of (disjoint and different) homoclinic classes and whose nonwandering sets admit no such partitions. It is easy to show that if a diffeomorphism has a finite number of chain components, then every chain component is locally maximal, and so every chain component of a tame diffeomorphism is locally maximal. Hence we can get the following result by Theorem A.

Theorem B. There is a residual set $\mathcal{R} \subset \operatorname{Diff}(M)$ such that if $f \in \mathcal{R}$ is tame, then the following two conditions are equivalent:
(1) $\mathcal{C} \mathcal{R}(f)$ is hyperbolic.
(2) $\mathcal{C R}(f)$ is shadowable.

2. Proof of Theorem A

In dynamical systems the periodic orbits play an important role. Some dynamical invariants are associated to them; in general, they also can be followed after perturbation of the dynamics. Pugh's closing lemma implies that any transitive set Λ of a C^{1}-generic diffeomorphism f is the Hausdorff limit of a sequence of periodic orbits P_{n} of f : i.e., $\lim _{n \rightarrow \infty} P_{n}=\Lambda$.

Recently Crovisier [4] provides us with a remarkable result for the following question, in terms of chain transitivity: what is the class of compact sets that may be approximated by a sequence of periodic orbits? He proved that the chain transitive sets of C^{1}-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits.

First we state some results which will be used in the proof of Theorem A.
Lemma 2.1. There is a residual set $\mathcal{R}_{1} \subset \operatorname{Diff}(M)$ such that every $f \in \mathcal{R}_{1}$ satisfies the following properties:
(1) Every periodic point of f is hyperbolic and all their invariant manifolds are transverse (Kupka-Smale).
(2) A compact f-invariant set Λ is chain transitive if and only if Λ is the Hausdorff limit of a sequence of periodic orbits of f ([4]).

Lemma 2.2. There is a residual set $\mathcal{R}_{2} \subset \operatorname{Diff}(M)$ such that every $f \in \mathcal{R}_{2}$ satisfies the following property: For any closed f-invariant set $\Lambda \subset M$, if there are a sequence of diffeomorphisms f_{n} converging to f and a sequence of hyperbolic periodic orbits P_{n} of f_{n} with index k verifying $\lim _{n \rightarrow \infty} P_{n}=\Lambda$, then there is a sequence of hyperbolic periodic orbits Q_{n} of f with index k such that Λ is the Hausdorff limit of Q_{n}, where the index of a hyperbolic periodic orbit P is the dimension of the stable manifold of P.

Proof. Let $\mathcal{K}(M)$ be the space of all nonempty compact subsets of M with the Hausdorff metric, and take a countable basis $\beta=\left\{\mathcal{V}_{n}\right\}_{n=1}^{\infty}$ of $\mathcal{K}(M)$. For each pair (n, k) with $n \geq 1$ and $k \geq 0$, we denote by $\mathcal{H}_{n, k}$ the set of diffeomorphisms f such that f has a C^{1}-neighborhood \mathcal{U} in $\operatorname{Diff}(M)$ with the following property: for every $g \in \mathcal{U}$, there is a hyperbolic periodic orbit $Q \in \mathcal{V}_{n}$ of g with index k. Let $\mathcal{N}_{n, k}$ be the set of diffeomorphisms f such that f has a C^{1}-neighborhood \mathcal{U} in $\operatorname{Diff}(M)$ with the following property: for every $g \in \mathcal{U}$, there is no hyperbolic periodic orbit $Q \in \mathcal{V}_{n}$ of g with index k. It is clear that $\mathcal{H}_{n, k} \cup \mathcal{N}_{n, k}$ is open in $\operatorname{Diff}(M)$. To show that $\mathcal{H}_{n, k} \cup \mathcal{N}_{n, k}$ is a dense in $\operatorname{Diff}(M)$, we take $f \in \operatorname{Diff}(M)-\mathcal{N}_{n, k}$. Then for any C^{1}-neighborhood \mathcal{U} of f, there is $g \in$ \mathcal{U} such that g has a hyperbolic periodic orbit $Q \in \mathcal{V}_{n}$ with index k. The hyperbolicity of Q for g implies that $g \in \mathcal{H}_{n, k}$. This means that $f \in \overline{\mathcal{H}_{n, k}}$, and so $\overline{\mathcal{H}_{n, k} \cup \mathcal{N}_{n, k}}=\operatorname{Diff}(M)$.

Let

$$
\mathcal{R}_{2}=\bigcap_{n \in \mathbb{Z}^{+}, k=0, \ldots, \operatorname{dim}(M)} \mathcal{H}_{n, k} \cup \mathcal{N}_{n, k} .
$$

Then \mathcal{R}_{2} is a residual subset of $\operatorname{Diff}(M)$. Let $f \in \mathcal{R}_{2}$, and let Λ be a closed f-invariant subset of M. Assume that there is a sequence of diffeomorphisms f_{n} converging to f and a sequence of periodic orbits P_{n} of f_{n} with index k such that Λ is the Hausdorff limit of P_{n}. For any neighborhood \mathcal{V} of Λ in $\mathcal{K}(M)$, take $\mathcal{V}_{m} \in \beta$ such that $\Lambda \in \mathcal{V}_{m} \subset \mathcal{V}$. Then we have $f \notin \mathcal{N}_{m, k}$, and so $f \in \mathcal{H}_{m, k}$. Hence f has a periodic orbit, say Q_{m}, in \mathcal{V}_{m} with index k. This completes the proof.

We say that a point x in M is well closable for $f \in \operatorname{Diff}(M)$ if for any $\varepsilon>0$, there are $g \in \operatorname{Diff}(M)$ with $d_{C^{1}}(g, f)<\varepsilon$ and a periodic point p of g such that $d\left(f^{n}(x), g^{n}(p)\right)<\varepsilon$ for all $0 \leq n \leq \pi(p)$, where $\pi(p)$ is the period of p. Let $\sum(f)$ denote the set of well closable points of f. Mane's ergodic closing lemma [6] says that $\mu\left(\sum(f)\right)=1$ for any f-invariant Borel probability measure μ on M.

Let \mathcal{M} be the space of all Borel measures μ on M endowed with the weak* topology. It is easy to check that, for any ergodic measure $\mu \in \mathcal{M}$ of f, μ is supported on a periodic orbit $P=\left\{p, f(p), \ldots, f^{\pi(p)-1}(p)\right\}$ of f if and only if

$$
\mu=\frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_{f^{i}(p)}
$$

where δ_{x} is the atomic measure respecting x.
The following lemma comes from the Mane's ergodic closing lemma in [6] which gives the measure theoretical viewpoint on the approximation by periodic orbits.

Lemma 2.3. There is a residual set $\mathcal{R}_{3} \subset \operatorname{Diff}(M)$ such that every $f \in \mathcal{R}_{3}$ satisfies the following property: Any ergodic invariant measure μ of f is the limit of sequence of ergodic invariant measures supported by periodic orbits P_{n}
of f in the weak* topology. Moreover, the orbits P_{n} converges to the support of μ in the Hausdorff topology.
Proof. Let $\beta=\left\{\mathcal{V}_{n}\right\}_{n=1}^{\infty}$ be a countable basis of \mathcal{M}. For each positive integer n, we denote by \mathcal{H}_{n} the set of diffeomorphisms f such that f has a C^{1}-neighborhood \mathcal{U} in $\operatorname{Diff}(M)$ with the following property: for any $g \in \mathcal{U}$, there is a periodic point p of g such that

$$
\frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_{g^{i}(p)} \in \mathcal{V}_{n}
$$

Let \mathcal{N}_{n} be the set of diffeomorphisms f such that f has a C^{1}-neighborhood \mathcal{U} in $\operatorname{Diff}(M)$ with the following property: for any $g \in \mathcal{U}$, there is no periodic point p of g such that $\frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_{g^{i}(p)} \in \mathcal{V}_{n}$. It is obvious that $\mathcal{H}_{n} \cup \mathcal{N}_{n}$ is open in $\operatorname{Diff}(M)$. To show that $\mathcal{H}_{n} \cup \mathcal{N}_{n}$ is a dense in $\operatorname{Diff}(M)$, we take $f \in \operatorname{Diff}(M)-\mathcal{N}_{n}$. Then for any C^{1}-neighborhood \mathcal{U} of f, there is $g \in \mathcal{U}$ such that g has a periodic point p such that $\frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_{g^{i}(p)} \in \mathcal{V}_{n}$. With a small perturbation, we may assume that the periodic orbit is hyperbolic. The hyperbolicity of p implies that $g \in \mathcal{H}_{n}$. This means that $f \in \overline{\mathcal{H}_{n}}$, and so $\mathcal{H}_{n} \cup \mathcal{N}_{n}$ is dense in $\operatorname{Diff}(M)$.

Let

$$
\mathcal{R}_{3}=\bigcap_{n \in \mathbb{Z}^{+}} \mathcal{H}_{n} \cup \mathcal{N}_{n}
$$

Then \mathcal{R}_{3} is a residual subset of $\operatorname{Diff}(M)$. Let $f \in \mathcal{R}_{3}$, and let μ be an ergodic invariant measure of f. For any neighborhood \mathcal{V} of μ in \mathcal{M}, there is $\mathcal{V}_{n} \in \beta$ such that $\mu \in \mathcal{V}_{n} \subset \mathcal{V}$. By the Mane's ergodic closing lemma and Birkhoff ergodic theorem, there is a well closable point x in the support of μ such that μ is the limit point of $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^{i}(x)}$ under the weak* topology and the support of μ equal the closure of the positive orbit of x. Since x is well closable, one can see that $f \notin \mathcal{N}_{n}$, and so $f \in \mathcal{H}_{n}$. Hence there is a periodic point, say p_{n}, of f such that $\frac{1}{\pi\left(p_{n}\right)} \sum_{i=0}^{\pi\left(p_{n}\right)-1} \delta_{f^{i}\left(p_{n}\right)} \in \mathcal{V}_{n} \subset \mathcal{V}$. This means that there is an ergodic invariant measure of f in \mathcal{V} whose support is a periodic orbit $P_{n}=\left\{f^{i}\left(p_{n}\right)\right\}_{i \in \mathbb{Z}}$ of f. By our construction, we can see that the support of μ is the Hausdorff limit of P_{n}, and so completes the proof.

In the following lemma, we can see that every periodic point of a shadowable chain transitive set Λ of $f \in \mathcal{R}_{1}$ has the same index; that is, the dimensions of stable manifolds of all periodic points in Λ are the same.
Lemma 2.4. Let $f \in \mathcal{R}_{1}$, and Λ be a shadowable chain transitive set of f. Then all periodic points in Λ have the same index.

Proof. Let p and q be two periodic points of f in Λ, and let $\varepsilon>0$ be a small constant such that the local stable manifold $W_{\varepsilon}^{s}(p)$ and the local unstable manifold $W_{\varepsilon}^{u}(q)$ are well defined. Take a constant $\delta>0$ such that every δ pseudo orbit in Λ is ε-shadowed by a point in M. Since Λ is chain transitive,
there is a δ-pseudo orbit $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ in Λ such that $x_{0}=q$ and $x_{n}=p$. Construct a δ-pseudo orbit ξ in Λ as follows:

$$
\xi=\left\{\ldots, f^{-2}(q), f^{-1}(q), q, x_{1}, \ldots, p, f(p), f^{2}(p), \ldots\right\} .
$$

Then there is an orbit $\operatorname{Orb}(y)$ which ε shows ξ, where $\operatorname{Orb}(y)=\left\{f^{n}(y): n \in \mathbb{Z}\right\}$. Since $\operatorname{Orb}(y) \cap W_{\varepsilon}^{s}(p) \neq \emptyset$ and $\operatorname{Orb}(y) \cap W_{\varepsilon}^{u}(q) \neq \emptyset$, we have $y \in W^{s}(p) \cap W^{u}(q)$. This implies that the index of p and index of q should be same. Otherwise it will contradicts the fact that the stable manifold $W^{s}(p)$ and the unstable manifold $W^{u}(q)$ are transverse, and so completes the proof.

Now we define the residual subset \mathcal{R} of $\operatorname{Diff}(M)$ required in the statement of Theorem A as follow: $\mathcal{R}=\mathcal{R}_{1} \cap \mathcal{R}_{2} \cap \mathcal{R}_{3}$. Then we have the following proposition which is crucial to prove Theorem A.

Proposition 2.1. Let $f \in \mathcal{R}$, and let Λ be a shadowable chain transitive set of f which is locally maximal. Then there exist constants $m>0$ and $0<\lambda<1$ such that for any periodic point $p \in \Lambda$,

$$
\begin{aligned}
& \quad \prod_{i=0}^{\pi(p)-1}\left\|\left.D f^{m}\right|_{E^{s}\left(f^{i m}(p)\right)}\right\|<\lambda^{\pi(p)}, \\
& \prod_{i=0}^{\pi(p)-1}\left\|\left.D f^{-m}\right|_{E^{u}\left(f^{-i m}(p)\right)}\right\|<\lambda^{\pi(p)}
\end{aligned}
$$

and

$$
\left\|\left.D f^{m}\right|_{E^{s}(p)}\right\| \cdot\left\|\left.D f^{-m}\right|_{E^{u}\left(f^{m}(p)\right)}\right\|<\lambda^{2},
$$

where $\pi(p)$ denote the period of p.
Proof. Since $f \in \mathcal{R}_{2}$, and all periodic points in Λ have the same index and Λ is locally maximal, we can choose a C^{1}-neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that every $g \in \mathcal{U}(f)$ has no nonhyperbolic periodic orbit which is contained in U. Suppose not. Then, for any C^{1}-neighborhood $\mathcal{V}(f)$ of f and a neighborhood V of Λ, we can take $g_{1}, g_{2} \in \mathcal{V}(f)$ and hyperbolic periodic orbits Q_{1} and Q_{2} (in V) of g_{1} and g_{2}, respectively, such that index $Q_{1} \neq$ index Q_{2}. Consequently we can select two sequences of diffeomorphisms g_{n} and g_{n}^{\prime} which converge to f, and two sequences of hyperbolic periodic orbits Q_{n}, Q_{n}^{\prime} of g_{n} and g_{n}^{\prime}, respectively, such that $\lim _{n \rightarrow \infty} Q_{n}=\Lambda=\lim _{n \rightarrow \infty} Q_{n}^{\prime}$ and $\operatorname{index} Q_{n} \neq \operatorname{index} Q_{n}^{\prime}$ for each $n \in \mathcal{N}$. Without loss of generality, we may assume that index $Q_{n}=\operatorname{index} Q_{m}$ and $\operatorname{index} Q_{n}^{\prime}=\operatorname{index} Q_{m}^{\prime}$ for all $m, n \in \mathcal{N}$ by taking a subsequence if necessary. From Lemma 2.2, we can choose two sequences of periodic orbits P_{n} and P_{n}^{\prime} of f such that index $P_{n}=\operatorname{index} Q_{n}$, index $P_{n}^{\prime}=$ index Q_{n}^{\prime} and Λ is the Hausdorff limit of $\left\{P_{n}\right\}$ and $\left\{P_{n}^{\prime}\right\}$, respectively. Since Λ is locally maximal, we may assume that $P_{n}, P_{n}^{\prime} \subset \Lambda$ for sufficiently large n. Since index $P_{n} \neq \operatorname{index} P_{n}^{\prime}$, we arrive at the contradiction by Lemma 2.4. Moreover we may assume that all of the indices of periodic orbits of $g \in \mathcal{U}(f)$ are the
same. Hence we can apply Lemma II. 3 in [6], and so we get the constants $K>0, m_{0} \in \mathbb{Z}^{+}$and $0<\lambda<1$ such that for any periodic point $p \in \Lambda$ with $\pi(p) \geq K$,

$$
\begin{gathered}
\prod_{i=0}^{\pi(p)-1}\left\|\left.D f^{m_{0}}\right|_{E^{s}\left(f^{i m_{0}}(p)\right)}\right\|<\lambda^{\pi(p)}, \\
\prod_{i=0}^{\pi(p)-1}\left\|\left.D f^{-m_{0}}\right|_{E^{u}\left(f^{-i m_{0}}(p)\right)}\right\|<\lambda^{\pi(p)}
\end{gathered}
$$

and

$$
\left\|\left.D f^{m_{0}}\right|_{E^{s}(p)}\right\| \cdot\left\|\left.D f^{-m_{0}}\right|_{E^{u}\left(f^{m_{0}}(p)\right)}\right\|<\lambda^{2} .
$$

Let Λ_{0} be the set of all periodic points in Λ whose periods are less than K. Since every periodic point of f is hyperbolic, there are only a finite number of periodic points in Λ_{0}, and so Λ_{0} is hyperbolic for f. Let k be a positive integer such that $\left\|\left.D f^{k m_{0}}\right|_{E^{s}(x)}\right\|<\lambda$ and $\left\|\left.D f^{-k m_{0}}\right|_{E^{u}(x)}\right\|<\lambda$ for all $x \in \Lambda_{0}$. If we let $m=k m_{0}$, then we know that m and λ are the required constants.

End of the proof of Theorem A. By Lemma 2.1 and the third property of Proposition 2.1, we can see that Λ admits a dominated splitting $T_{\Lambda} M=E \oplus F$ which satisfies $E(p)=E^{s}(p)$ and $F(p)=E^{u}(p)$ for every periodic point $p \in \Lambda$. To complete the proof of Theorem A, it is enough to show that $D f$ is contracting on E and $D f$ is expanding on F if Λ is shadowable for f. Suppose $D f$ is not contracting on E. Then, by a simple calculation, we can find a "bad" point $b \in \Lambda$ such that

$$
\left\|\left.D f^{k}\right|_{E(b)}\right\| \geq 1
$$

for any $k>0$. Denote by δ_{x} the atomic measure respecting x. Let us consider a sequence $\left\{\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^{i m}(b)}: n \in \mathbb{Z}^{+}\right\}$in \mathcal{M}, and take an accumulation point $\mu \in \mathcal{M}$ of the sequence. Then we can see that μ is a f^{m}-invariant probability measure on M with $\operatorname{supp}(\mu) \subset \Lambda$ which satisfies $\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d f_{*}^{l} \mu \geq 0$ for any $l \in \mathbb{Z}$. Take

$$
\nu=\frac{1}{m} \sum_{l=0}^{m-1} f_{*}^{l} \mu
$$

We can easily see that ν is a f-invariant measure supported on Λ which satisfies $\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu \geq 0$. Note here that we can extend E continuously to the whole manifold M. By the ergodic decomposition theorem, there is an ergodic measure μ_{0} with $\operatorname{supp}\left(\mu_{0}\right) \subset \Lambda$ such that

$$
\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu_{0} \geq 0
$$

Then, by Lemma 2.3, we can take a sequence of ergodic f-invariant measures μ_{n} such that the support of each μ_{n} is a periodic orbit P_{n} of $f,\left\{\mu_{n}\right\}$ converges to μ_{0} and $\left\{P_{n}\right\}$ converges to the support of μ_{0}. Since Λ is locally maximal, we may assume that every P_{n} is contained in Λ for sufficiently large n.

If we apply Proposition 2.1, then we have

$$
\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu_{n}<\log \lambda
$$

for sufficiently large n. Since μ_{n} converges to μ_{0} in the weak* topology, we have

$$
\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu_{n} \rightarrow \int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu_{0}
$$

as $n \rightarrow \infty$. Hence we get $\int \log \left(\left\|\left.D f^{m}\right|_{E(x)}\right\|\right) d \mu_{0}<0$. The contradiction proves that $D f$ is contracting on E. Similarly we can show that $D f$ is expanding on F.

Acknowledgements. The first author was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2008-313-C00081).

References

[1] F. Abdenur, Generic robustness of spectral decompositions, Ann. Scient. Ec. Norm. Sup. (4) 36 (2003), no. 3, 213-224.

2] F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the C^{1} topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245.
3] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math. 158 (2004), no. 1, 33-104.
[4] S. Crovisier, Periodic orbits and chain-transitive sets of C^{1}-diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 104 (2006), 87-141.
[5] K. Lee and M. Lee, Hyperbolicity of C^{1}-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145.
[6] R. Mané, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540.
[7] K. Sakai, C^{1}-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 2008), no. 3, 987-1029.
[8] M. Sambarino and J. Vieitez, On C^{1}-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481.
[9] , Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333.
[10] X. Wen, S. Gan, and L. Wen, C^{1}-stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357.

11] D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4729 733.

Keonhee Lee
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail address: khlee@cnu.ac.kr
Xiao Wen
Department of Mathematics
Beihang University
Beijing 100083, P. R. China
E-mail address: wenxiao@buaa.edu.cn

