
Bull. Korean Math. Soc. 49 (2012), No. 2, pp. 235–247

http://dx.doi.org/10.4134/BKMS.2012.49.2.235

FUNCTION ALGEBRAS ON BIDISKS

Kieu Phuong Chi and Nguyen Quang Dieu

Abstract. We study sufficient conditions for function algebras generated
by four smooth functions on a small closed bidisk near the origin in C2

to coincide with the space of continuous functions on the bidisk. This
problem in one dimension has been studied by De Paepe and the second
name author.

1. Introduction

Let K be a compact subset of Cn. We denote by C(K) the algebra of
continuous complex valued functions on K, provided by the topology induced
by the supremum norm ∥ · ∥. Let P (K) be the uniform closure in C(K) of all
(restrictions to K) polynomials. We recall that for a given compact K in Cn,

by K̂ we denote the polynomial convex hull of K, i.e.,

K̂ = {z ∈ Cn : |p(z)| ≤ ∥p∥K for every polynomial p in Cn}.

We say that K is polynomially convex if K̂ = K. A compact K ⊂ C is
polynomially convex if its complement is connected. In Cn (n > 1) there no
general condition that a compact subset is polynomially convex. It is well-
known that K, K̂ respectively can be identified with the space of maximal
ideal of C(K), P (K). The theory of polynomial convexity is curial in function
theory of several complex variables. For instance, by the classical Oka-Weil
theorem ensures that holomorphic function on neighborhoods of a compact
polynomially convex set can be approximated uniformly by polynomials. Later
on, Hörmander and Wermer proved that continuous function on a compact
polynomially convex subset of smooth totally real manifold M in Cn can be
approximated uniformly by polynomials (see Theorem 1.1, [3]). Recall that a
manifold M is totally real at p ∈M if the real tangent space Tp(M) of M at p
contains no complex line. A manifoldsM is totally real if it is totally real at any
point of M . An example of totally real manifold is the real Euclidean space
Rn. In this case, the mentioned above theorem of Hörmander and Wermer
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reduces to classical Stone-Weierstrass theorem. Note that, if f1, . . . , fn are
C1 functions on an open subset U of Cn and det( ∂fi∂zj

(a))ij ̸= 0 with a =

(a1, . . . , an) ∈ U , then M = {(z1, . . . , zn, f1, . . . , fn) : z ∈ U} is totally real at
(a1, . . . , an, f1(a), . . . , fn(a)).

We now describe in details our problem. Let F,G be C1 functions defined
on a neighborhood of the origin in C2. Assume that

F (0, 0) = G(0, 0) =
∂F

∂z
(0, 0) =

∂G

∂z
(0, 0)

=
∂F

∂w
(0, 0) =

∂F

∂w
(0, 0) =

∂F

∂w
(0, 0)

=
∂G

∂z
(0, 0) = 0,

and
∂F

∂z
(0, 0) =

∂G

∂w
(0, 0) = 1.

In other word, F (resp. G) looks like z (resp. w) near the origin. The aim of this
paper is to determine explicitly [z2, F 2, w2, G2], the closed function subalgebra

of C(D) generated by z2, F 2, w2, G2 on a small bidisk D = D̃× D̃, where D̃ is
a closed disk around the origin in C. In general, it is a difficult problem. We
have partial answers in the case where the lowest order terms of f := F − z
and g := G− w are polynomials whose coefficients satisfy certain conditions.

Our study is motivated by a similar problem in one complex variable. More
precisely, let F be a smooth function which looks likes z near the origin in
C. Under what conditions the closed function subalgebras [z2, F 2; D̃] on a

small closed D̃ coincides with C(D̃)? A complete answer to this question is
still unknown. However, using the theory of polynomial convexity, sufficient
conditions on F are obtained in the case where F − z are perturbations of
homogeneous polynomials in z and z whose coefficients satisfy certain easy
checked conditions. For more details see [1], [2], [5] and the references listed
therein.

In our work, we adopt the same approach like the one variable case. Namely,
we consider the image of D under the differentiable mapping

S : (z, w) 7→
(
z2, (z + f)2, w2, (w + g)2

)
.

Under some technical conditions on f and g, we first show that P
(
S(D)

)
=

C
(
S(D)

)
. To prove this fact, we look at the inverse of S(D) under the map

π : (z, w, u, v) 7→ (z2, w2, u2, v2).

Then π−1
(
S(D)

)
is union of totally real graphs over D. By using a key lemma

of Kallin giving a sufficient condition for polynomial convexity of union of two
compact polynomially convex, we can show that π−1

(
S(D)

)
is polynomially

convex for D small enough. Thus, by some variant of above cited theorem
of Hömander and Wermer, it follows that P (π−1(S(D))) = P (π−1(S(D))) for
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D sufficiently small. By the technical lemma that is an extension in [5], we
can conclude that P (S(D)) = C(S(D)) for such D. We finish the proof by
analyzing the nature of the map S. Roughly speaking, if S is a diffeomorphism
onto S(D), then the function algebra [z2, (z+f)2, w2, (w+g)2;D] equals C(D).
Otherwise, this function algebra coincides with a proper closed subalgebra of
C(D) depending on the locus where S is not injective.

Finally, we note that the most difficult step in the above approach is to show
the polynomially convexity of a union of totally graphs. Unlike the one dimen-
sion case, in the high dimension, we have difficulties while applying Kallin’s
lemma, since the pairwise intersections of these graphs may be of real dimen-
sion two.

2. Preliminaries

We will frequently invoke the following useful result (see [5]).

Theorem 2.1. (Kallin’s lemma) Suppose that:
(i) X1, X2 are polynomially convex subsets of Cn;
(ii) Y1, Y2 are polynomially convex subsets of C such that 0 is a common

boundary point for Y1 and Y2, and Y1 ∩ Y2 = {0};
(iii) p : Cn → C is a polynomial map such that p(X1) ⊂ Y1, p(X2) ⊂ Y2;
(iv) p−1(0) ∩ (X1 ∪X2) is polynomially convex.

Then X1 ∪X2 is polynomially convex.

In practice, we will try to find p such that p(X1) (resp. p(X2)) is contained
in upper (resp. lower) half plane and p(X1)∩p(X2) = {0}. It should be noticed
that Kallin’s lemma is applicable mostly in the cases where X1∩X2 is “small”.

The next result in [4] is a generalization of the Hörmander-Wermer theorem
mentioned at the beginning of our paper.

Theorem 2.2 (O’Farrell, Preskenis and Walsh). Let X be a compact polyno-
mially convex set in Cn and E be a closed subset of X. Assume that X \ E is
totally real (that is, locally contained in a totally real manifold). Then

P (X) = {f ∈ C(X) : f
∣∣
E
∈ P (E)}.

We say that a general homogeneous polynomial p of degree k ≥ 2 in variables
z and z

p(z) =
+∞∑

l=−∞

alz
lzk−l

satisfies the coefficient condition if there exists l0 ≤ k
2 such that

|al0 | >
∑
l ̸=l0

|al|.

The interest for introducing the above notion lies in the following fact.
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Lemma 2.3. Let p be a homogeneous polynomial in variables z and z of degree
k. Assume that p satisfies the coefficient condition. Let f, g be functions of class
C1 near the origin in C satisfying f(z) = o(|z|k), g(z) = o(|z|k). Then for every

closed disk D̃ around 0 ∈ C small enough, we have that M1 ∪M2 is polynomial
convex, where

M1 = {
(
z, z + p(z) + f(z)

)
: z ∈ D̃},

M2 = {
(
z, z − p(z) + g(z)

)
: z ∈ D̃}.

Proof. We write

p(z) =
+∞∑

l=−∞

alz
lzk−l.

Since p satisfies the coefficient condition, we can find l0 such that 2l0 ≤ k and

(1) |al0 | −
∑
l ̸=l0

|al| > 0.

Consider the polynomial φ : C2 → C defined by

φ(z, w) = al0z
k−2l0+1 + al0w

k−2k0+1, (z, w) ∈ C2.

We claim that for D̃ small enough φ(M1) is contained in the upper half plane.
Indeed,

φ
(
z, z + p(z) + f(z)

)
= al0z

k−2l0+1 + al0

(
z + p(z) + f(z)

)k−2l0+1

= al0z
k−2l0+1 + al0z

k−2l0+1

+ (k − 2l0 + 1)al0z
k−2l0p(z) + o(|z|2k−2l0).

This follows that

Imφ
(
z, z+p(z)+f(z)

)
≥ (k−2l0+1)|al0 |

(
|al0 |−

∑
l ̸=l0

|al|
)
|z|2k−2l0+o(|z|2k−2l0).

Combining this with (1), we infer that for D̃ small enough φ(M1) is contained
in the upper half plane and φ(M1)∩R = {0}. By the same computation we also
deduce that φ(M2) is contained in the lower half plane and φ(M2) ∩ R = {0}.
Thus φ−1(0)∩(M1∪M2) = {(0, 0)} for D̃ small enough. The desired conclusion
now follows from Kallin’s lemma. □

We need the following lemma which is a generalization of Lemma of [5].

Lemma 2.4. Let X be a compact subset of Cm, and a polynomial mapping
π : Cm → Cmdefined by

π(z1, . . . , zm) =
(
zk1
1 , . . . , zkm

m

)
.

Let π−1(X) = X1,...,1 ∪ · · · ∪ Xi1,...,im ∪ · · · ∪ Xk1,...,km , with X1,...,1 compact,
and

Xi1,...,im =
{(
ρk1−1
k1

z1, . . . , ρ
km−1
km

zm
)
: (z1, . . . , zm) ∈ X1,...,1

}
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for 1 ≤ i1 ≤ k1, . . . , 1 ≤ im ≤ km where ρki = exp
(
2πi
kj

)
with j = 1, . . . ,m. If

P
(
π−1(X)

)
= C

(
π−1(X)

)
,

then P (X) = C(X).

Proof. Let Q(z1, . . . , zm) =
∑
aj1,...,jmz

j1
1 · · · zjmm be a polynomial in m vari-

ables. For each (i1, . . . , im) with 1 ≤ i1 ≤ k1, . . . , 1 ≤ im ≤ km, we put

Qi1,...,im(z1, . . . , zm) := Q
(
ρi1−1
k1

z1, . . . , ρ
im−1
km

zm
)
, (z1, . . . , zm) ∈ X1,...,1.

We claim that
1

k1 · · · km

∑
Qi1,...,im(z1, . . . , zm) =

∑
ap1k1,...,pmkmz

k1p1

1 · · · zkmpm
m .

Indeed, since every polynomialQ can be written by as a finite sum of monomials
of the forms azs11 · · · zsmm we only need check for Q(z1, . . . , zn) = azs11 · · · zsmm .
We have

1

k1 · · · km

∑
Qi1,...,im(z1, . . . , zm)

=
a

k1 · · · km
zs11 · · · zsmm

∑
ρ
(i1−1)s1
k1

· · · ρ(im−1)sm
km

=
a

k1 · · · km
zs11 · · · zsmm

m∏
j=1

( ∑
1≤ij≤kj

(
ρ
sj
kj

)ij−1
)
.

If there exists 1 ≤ j ≤ m such that sj ̸= pjkj , then∑
1≤ij≤kj

(
ρ
sj
kj

)ij−1
=

(
ρ
sj
kj
)kj − 1

ρ
sj
kj

− 1
= 0,

where ρ
kj

kj
= (exp 2πi

kj
)kj = 1. It follows that

1

k1 · · · km

∑
Qi1,...,im(z1, . . . , zm) = 0.

In the case sj = pjkj for all j = 1, . . . ,m we have∑
1≤ij≤kj

(
ρ
sj
kj

)ij−1
=

∑
1≤ij≤kj

(
ρ
kj

kj

)pj(ij−1)
= kj .

This implies that

1

k1 · · · km

∑
Qi1,...,im(z1, . . . , zm) =

a

k1 · · · km
zs11 · · · zsmm

m∏
j=1

kj

= azp1k1

1 · · · zkmpm
n .

The claim is proved. Now, suppose that P (π−1(X)) = C(π−1(X)). Let f ∈
C(X). Then f ◦ π ∈ C(π−1(X)), so there is a polynomial Q in m variables
with f ◦ π ≈ Q in π−1(X). In particular, this is true for Xi1,..,im , so

f(zk1
1 , . . . , zkm

m ) ≈ Q(ρi1−1
k1

z1, . . . , ρ
im−1
km

zm) = Qi1,...,im(z1, . . . , zm)
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on X1,...,1. It follows that
(2)

f(zk1
1 , . . . , zkm

m ) ≈ 1

k1 · · · km

∑
1≤i1≤k1,...,1≤im≤km

Qi1,...,im(z1, . . . , zm) on X1,...,1.

If Q has form of

Q(z1, . . . , zm) =
∑

ar1,...,rmz
r1
1 · · · zrmm ,

then the right hand of (2) to equal∑
ap1k1,...,pmkmz

k1p1

1 · · · zkmpm
m ,

so equals to P (zk1
1 , . . . , zkm

m ), where P is a polynomial in m variables. We
conclude that

f(zk1
1 , . . . , zkm

m ) ≈ P (zk1
1 , . . . , zkm

m ) on X1,...,1.

That is f ≈ P on X. So P (X) = C(X). The lemma is proved. □

3. The main results

The aim of this work is to prove the following results.

Theorem 3.1. Suppose that p (resp. q) is a general homogenous polynomial in
z, z of even degree k, (resp. in w,w of even degree k′) satisfying the coefficient

condition. Let m ≥ k′ and m′ ≥ k be nonnegative integers and f̂ (resp. ĝ) be
C1 function near the origin in C2 such that

lim
(z,w)→(0,0)

f̂(z, w)

|z|k|w|m
= lim

(z,w)→(0,0)

ĝ(z, w)

|z|k′ |w|m′ = 0.

Define

f(z, w) = p(z)|w|m + f̂(z, w), g(z, w) = q(w)|z|m
′
+ ĝ(z, w).

Then

[z2, (z + f)2, w2, (w + g)2;D]

= {h ∈ C(D) : h(z, 0) = h(−z, 0) = h(0,−w) = h(0, w)}
for every bidisk D sufficiently small.

We have not been able to describe the algebra [z2, (z + f)2, w2, (w+ g)2;D]
in the case of 0 < m < k′ or 0 < m′ < k. The following theorem deals to
m = m′ = 0.

Theorem 3.2. Suppose that p (resp. q) is a general homogenous polynomial in
z, z of even degree k, (resp. in w,w of even degree k′) satisfying the coefficient

condition. Let f̂ and ĝ be C1 functions near the origin in C2 such that

lim
(z,w)→(0,0)

f̂(z, w)

|z|k|w|k
= lim

(z,w)→(0,0)

ĝ(z, w)

|z|k′ |w|k′ = 0.
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Define

f(z, w) = p(z) + f̂(z, w), g(z, w) = q(w) + ĝ(z, w).

Then

[z2, (z + f)2, w2, (w + g)2;D] = C(D)

for every bidisk D sufficiently small.

Proof of Theorem 3.1. Let S be the map defined near the origin in C2 by

S(z, w) :=
(
z2,

(
z + f(z, w)

)2
, w2,

(
w + g(z, w)

)2)
.

Define the following transformations from C4 to C4

θ1(z, w, u, v) 7→ (−z, w, u, v); θ2(z, w, u, v) 7→ (z, w,−u, v);

θ3(z, w, u, v) = (−z, w,−u, v).
Let π : C4 → C4 be the polynomial mapping

π(z, w, u, v) = (z2, w2, u2, v2).

Then we may express

π−1
(
S(D)

)
=

(
M1 ∪M2 ∪M3 ∪M4

)
∪
( 3∪

j=1

θj(M1 ∪M2 ∪M3 ∪M4)
)
,

where

M1 := {
(
z, z + f(z, w), w, w + g(z, w)

)
: (z, w) ∈ D};

M2 := {
(
z, z + f(z, w),−w,−w − g(z, w)

)
: (z, w) ∈ D};

M3 := {
(
− z,−z − f(z, w), w, w + g(z, w)

)
: (z, w) ∈ D};

M4 := {
(
− z,−z − f(z, w),−w,w − g(z, w)

)
: (z, w) ∈ D}.

We split the proof into several steps.

Step 1. We will show that for D sufficiently small, the unionM1∪M2∪M3∪M4

is polynomially convex. To do this, first we write

q(w) =

∞∑
l=−∞

alw
lwk′−l.

Since q satisfies the coefficient condition, we can find l0 such that 2l0 ≤ k′ and

(3) b := |al0 | −
∑
l ̸=l0

|al| > 0.

Consider the polynomial φ : C4 → C defined by

φ(z, w, u, v) = zw
(
al0u

k′−2l0+1 + al0v
k′−2l0+1

)
.



242 KIEU PHUONG CHI AND NGUYEN QUANG DIEU

Now we claim that φ(M1) ∪ φ(M3) is contained in the upper half plane for D
small enough. Indeed,

φ
(
z, z + f(z, w), w, w + g(z, w)

)
=

[
|z|2 + zp(z)|w|m + zf̂(z)

][
al0w

k′−2l0+1

+ al0
(
w + p(w)|z|m

′
+ ĝ(z, w)

)k′−2l0+1
]

=
[
|z|2 + |w|mzp(z) + zf̂(z, w))

][(
al0w

k′−2l0+1 + al0w
k′−2l0+1

)
+ (k′ − 2l0 + 1)al0w

k′−2l0q(w)|z|m
′
+ o

(
|w|2k

′−2l0 |z|m
′)]
.

Since m ≥ k′, it follows form (3) that

Imφ
(
z, z + f(z, w), w, w + g(z, w)

)
≥ (k′ − 2l0 + 1)b|al0 ||z|m

′+2|w|2k
′−2l0 + o

(
|z|m

′+2|w|2k
′−2l0

)
.

(4)

Hence φ(M1) is contained in the upper half plane for D small enough. The
same conclusion for φ(M3) holds by the same computation. This proves the
claim. Now we look at the image of M2 ∪M4 under the map φ. Since k′ is
even, we obtain

φ
(
z, z + f(z, w), w, w + g(z, w)

)
=

[
|z|2 + zp(z)|w|m + zf̂(z)

][
al0w

k′−2l0+1

+ al0
(
− w − p(w)|z|m

′
− ĝ(z, w)

)k′−2l0+1
]

=
[
|z|2 + |w|mzp(z) + zf̂(z, w))

][(
− al0w

k′−2l0+1 − al0w
k′−2l0+1

)
− (k′ − 2l0 + 1)al0w

k′−2l0q(w)|z|m
′
+ o

(
|w|2k

′−2l0 |z|m
′)]
.

Since m ≥ k′, it follows from (3) that

Imφ
(
z, z + f(z, w), w, w + g(z, w)

)
≤ − (k′ − 2l0 + 1)b|al0 ||z|m

′+2|w|2k
′−2l0 + o

(
|z|m

′+2|w|2k
′−2l0

)
.

(5)

Thus φ(M2) is contained in the lower half plane. This is also true for φ(M4)
by the same argument.

Next we claim that φ(M1) ∩ φ(M2) = {0} and φ−1(0) ∩ (M1 ∪M2) is poly-
nomially convex for every bidisk D small enough. Indeed, on one hand we
have

φ(M1) ∩ φ(M2) ⊂ {x ∈ C : Imx = 0}.
On the other hand, from (4) and (5), we infer that for D small enough

φ−1
(
φ(M1) ∩ φ(M2)

)
∩
(
M1 ∪M2)

= {(z, z, 0, 0) : z ∈ D̃} ∪ {(0, 0, w, w) : z ∈ D̃} := M̃.
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Thus by the definition of φ we get φ(M1) ∩ φ(M2) = {0}. Now we claim

that M̃ is polynomially convex for any closed disk D̃ around 0 ∈ C. Indeed,
by the Stone-Weierstrass theorem, we have M̃1 = {(z, z, 0, 0) : z ∈ D̃} and

M̃2 = {(0, 0, w, w) : w ∈ D̃} are polynomially convex. Consider the polynomial
λ : C4 → C defined by λ(z, w, u, v) = zw. The claim is implied by applying

Kallin’s lemma to λ, M̃1 and M̃2. The same reasoning also implies that φ(M3)∩
φ(M4) = {0} and φ−1(0)∩(M3∪M4) is polynomially convex for every bidisk D
sufficiently small. At this point, we may apply Kallin’s lemma to get M1 ∪M2

and M3 ∪M4 are polynomially convex for every bidisk D small enough.
Next we show that M1 ∪M2 ∪M3 ∪M4 is polynomially convex for D small

enough. To this end, we write

p(z) =

+∞∑
l=−∞

blz
lzk−l.

Since p satisfies the coefficient condition, we can find l1 such that 2l1 ≤ k and

|bl1 | >
∑
l ̸=l1

|bl|.

Consider the polynomial ψ : C4 → C defined by

ψ(z, w, u, v) = uv
(
bl1z

k−2l1+1 + bl1w
k−2l1+1

)
.

Following exactly the above reasoning, we obtain that for D small enough the
set ψ(M1 ∪M2) (resp. ψ(M3 ∪M4)) is contained in the upper (resp. lower)
half plane. Furthermore

ψ(M1 ∪M2) ∩ ψ(M3 ∪M4) = {0}.

So in view of Kallin’s lemma we have M1 ∪ M2 ∪ M3 ∪ M4 is polynomially
convex for D small enough.

Step 2. We will prove that π−1
(
S(D)

)
is polynomially convex for D sufficiently

small. It follows from the previous step that if D is a small enough bidisk, then
M1 ∪M2 ∪M3 ∪M4 is polynomially convex. Hence θj(M1 ∪M2 ∪M3 ∪M4)
is also polynomially convex for j = 1, 2, 3 and D small enough. By applying
Kallin’s lemma to the polynomial

α : C4 → C, α(z, w, u, v) := zw

we can check that (M1 ∪M2 ∪M3 ∪M4) ∪ θ1(M1 ∪M2 ∪M3 ∪M4) is poly-
nomially convex and θ2(M1 ∪ M2 ∪ M3 ∪ M4) ∪ θ3(M1 ∪ M2 ∪ M3 ∪ M4) is
polynomially convex for D sufficiently small. Finally, by using Kallin’s lemma
and polynomial

β : C4 → C, β(z, w, u, v) := uv,

we can conclude that π−1
(
S(D)

)
is polynomially convex forD sufficiently small.
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Step 3. We show that P
(
S(D)

)
= C

(
S(D)

)
. For this, we first show that

P
(
π−1(S(D))

)
= C

(
π−1(S(D))

)
for D sufficiently small. For any closed disk

D̃ around 0 ∈ C, we set

N := {(z, z) : z ∈ D̃} ∪ {(z,−z) : z ∈ D̃}.

Notice that π−1(S(D)) is union of 16 totally real graphs in C4. Furthermore,
for D small enough, π−1(S(D)) \E is locally contained in one of these totally
graph, where

E =
(
N × {(0, 0)}

)
∪
(
{(0, 0)} ∪N

)
.

We claim that P (E) = C(E). To see this, we first note that P (N) = C(N).
Indeed, by Stone-Weierstrass theorem we have N1, N2 are polynomially convex,
where

N1 = {(z, z) : z ∈ D̃}, N2 = {(z, z) : z ∈ D̃}.

By applying Kallin’s lemma to X1 := N1, X2 := N2 and p(z, w) = zw we get
that N is polynomially convex. Note that outside the origin of C2, N is locally
contained in a totally real manifold, so by Theorem 2.2 we have P (N) = C(N).
It follows that there exists a sequence φn of polynomial in z, w such that φn

converges uniformly to z on N . Let π1, π2 be projections from C4 onto C2

defined by

π1(z, w, u, v) := (z, w), π2(z, w, u, v) := (u, v).

It easy to check that ϕn◦π1 converges uniformly to z on E and ϕn◦π2 converges
uniformly to w. This implies that z, w belong to P (E). Therefore, in view
of the Stone-Weierstrass theorem we get P (E) = C(E) as claimed. Now we
apply Theorem 2.2 to obtain that P

(
π−1(S(D))

)
= C

(
π−1(S(D))

)
for D small

enough. Finally, applying Lemma 2.4, we get that P
(
S(D)

)
= C

(
S(D)

)
.

Step 4. Completion of the proof. Set A = {(z, w) : zw = 0}. We claim that
S : D\A→ S(D)\S(A) is injective forD small enough. Assume otherwise, then
we can find the sequence {(zn, wn)}, {(z′n, w′

n)} having the following properties:
(a) zn → 0, wn → 0.
(b) znwn ̸= 0, z′nw

′
n ̸= 0, ∀n.

(c) (zn, wn) ̸= (z′n, w
′
n), ∀n.

(d) S(zn, wn) = S(z′n, w
′
n),∀n.

After passing to a subsequence, we can assume, in view of (c) that zn ̸= z′n
for all n. It follows from (d) that for every n ≥ 1

zn = −z′n, (zn + f(zn, wn))
2 = (z′n + f(z′n, w

′
n))

2.

Switching again to a subsequence, there are two cases to consider.
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Case 1. zn + f(zn, wn) = z′n + f(z′n, w
′
n) ∀n ≥ 1. Then we have

2zn = f(zn, wn)− f(z′n, w
′
n)

= f(zn, wn)− f(−zn, w′
n)

= p(zn)
(
|wn|m − |w′

n|m
)
+ f̂(zn, wn)− f̂(z′n, w

′
n)

= o(zn).

This is a contradiction.
Case 2. zn + f(zn, wn) = −z′n − f(z′n, w

′
n) for all n ≥ 1. Since p satisfies the

coefficient condition, we can find a constant b′ > 0 such that for all n large
enough p(zn) ≥ b′|zn|k. On the other hand, we have

0 = f(zn, wn) + f(z′n, w
′
n)

= f(zn, wn) + f(−zn, w′
n)

= p(zn)
(
|wn|m + |w′

n|m
)
+ 0(|zn|k).

We reach again to a contradiction (when n sufficiently large).
Thus S : D \ A → S(D) \ S(A) is injective for D small enough. It then

follows that h is a homeomorphism between D \ A and S(D) \ A for D small
enough.

We are going to show the equality

[z2, (z + f)2, w2, (w + g)2;D]

= {h ∈ C(D) : h(z, 0) = h(−z, 0) = h(0,−w) = h(0, w)}.

Given h ∈ C(D) satisfying

f(z, 0) = f(−z, 0) = f(0, w) = f(0,−w)

for every (z, w) ∈ D. We define

k(z, w, u, v) =


(h ◦ S−1)(z, w, u, v) (z, w, u, v) ∈ S(D) \ S(A)
h(z′, 0) z = z′2, w = z′2, u = v = 0

h(0, w′) z = w = 0, u = w′2, v = w′2.

It is easy to check that k ∈ C
(
S(D)

)
and k ◦ S ≡ h on D. By the result

proven in Step 3, we have

h ∈ [z2, (z + f)2, w2, (w + g)2;D].

This is completion of the proof of Theorem 3.1. □

Proof of Theorem 3.2. We retain the notation used in the proof of Theorem
3.1. The proof of this case is quite similar to Theorem 3.1, we only indicate
the necessary changes. As before, we proceed through four steps.

Step 1. M1 ∪M2 ∪M3 ∪M4 is polynomially convex. The proof is the same
as the proof of Theorem 3.1. There are two changes that have to consider the
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polynomials

φ(z, w, u, v) =
(
al0u

k′−2l0+1 + al0v
k′−2l0+1

)
and

ψ(z, w, u, v) =
(
bl1z

k−2l1+1 + bl1w
k−2l1+1

)
when proving polynomial convexity ofM1∪M2,M3∪M4 andM1∪M2∪M3∪M4.

Step 2. π−1
(
S(D)

)
is polynomially convex for D small enough. The proof is

very similar to the proof of Theorem 3.1. We omit the details.

Step 3. We show that P (S(D)) = C(S(D)). For this, we first show that
P
(
π−1(S(D))

)
= C

(
π−1(S(D))

)
for D sufficiently small. For any closed disk

D̃ around 0 ∈ C, we set

N1 := {(z, z + p(z)) : z ∈ D̃}, N2 := {(z, z − p(z)) : z ∈ D̃};

N3 := {(w,w + q(w)) : z ∈ D̃}, N4 := {(w,w − q(w)) : z ∈ D̃}.
Since p and q are general polynomials of even degree we deduce that π−1(S(D))
is locally contained in totally real manifold outside the compact

E :=
(
(N1 ∪N2)× {(0, 0)}

)
∪
(
{(0, 0)} × (N3 ∪N4)

)
.

We claim that P (E) = C(E). To do this, we first apply Lemma 2.3 to get that

N1 ∪ N2 and N3 ∪ N4 are polynomially convex for D̃ small enough. Now it
suffices to apply Kallin’s lemma to polynomial map λ(z, w, u, v) = zw and two
polynomially convex compact sets (N1 ∪N2)×{(0, 0)}, {(0, 0)}× (N3 ∪N4) to
get that E is polynomially convex for D small enough. Note that E is locally
contained in a totally real manifold outside the origin (in C4). Therefore,
by Theorem 2.2 P (E) = C(E) as claimed. Next, by Step 2, π−1

(
S(D)

)
is

polynomially convex for D sufficiently small. Using again Theorem 2.2 we have
P
(
π−1

(
S(D)

))
= C

(
π−1

(
S(D)

))
. It follows from Lemma 2.4 that P

(
S(D)

)
=

C
(
S(D)

)
for D sufficiently small.

Step 4. Completion of the proof. By the coefficient condition of p and q, it
is easy to check that the functions z2, (z + f)2, w2, (w + g)2 separate points
near the origin of C2. This follows that S is a homeomorphism from D onto
S(D). Hence the theorem follows from the result proven in Step 3. The proof
is complete. □

Remark 3.3. By Theorem 11 in [5], we have [z2, F 2; D̃] ̸= C(D̃) for

F (z) =
z

1 + z
= z − z2 + o(|z|2)

and D̃ is a closed disk around 0 ∈ C with radius < 1. It follows that

[z2, F (z)2, w2, F (w)2; D̃] ̸= C(D)
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for every closed bidisk D around the origin in C2 with radius < 1. Therefore
the coefficient condition on f and g in Theorem 3.2 can not be entirely dropped.
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