
Bull. Korean Math. Soc. 49 (2012), No. 2, pp. 223–234

http://dx.doi.org/10.4134/BKMS.2012.49.2.223

GEOMETRIC QUANTIZATION OF

ODD DIMENSIONAL SPINc MANIFOLDS

Jian Wang and Yong Wang

Abstract. We prove a Guillemin-Sternberg geometric quantization for-
mula for circle action on odd dimensional spinc-manifolds. We prove
two Kostant type formulas in this case. As a corollary, we get a cutting

formula for the odd spinc quantization.

1. Introduction

In 1982, a fascinating conjecture appeared about group actions. Guillemin
and Sternberg [8] gave a precise mathematical formulation of Dirac’s idea that
“quantization commutes with reduction”, in which they defined the former
as geometric quantization. This conjecture was first proved by Guillemin-
Sternberg in the holomorphic situation for Kähler manifolds. They raised the
conjecture for general symplectic manifolds. When group is abelian, this con-
jecture was first proved by Guillemin [7] in a special case, and later in general by
Meinrenken [16] and Vergne [19, 20] independently. The remaining nonabelian
case was proved by Meinrenken [17] using the symplectic cut techniques of
Lerman [14]. There are also closely related papers by Duistermaat-Guillemin-
Meinrenken-Wu [3], where the symplectic cut techniques were applied to the
circle action case, and by Jeffery-Kirwan [10], where the authors proved the
conjecture under some extra conditions by using the nonabelian localization
formula of Witten [21] and Jeffery-Kirwan [11]. In all these works, the equi-
variant index theorem of Atiyah-Segal-Singer [2], which expressed the analytic
equivariant index through topological data on the fixed point sets, play es-
sential roles. In [18], Tian and Zhang gave an analytic localization proof of
this conjecture by using the Bismut-Lebeau analytic localization technique. In
[1], Cannas, Karshon and Tolman extended this conjecture when manifolds
are not symplectic and stated three versions of “quantization commutes with
reduction” corresponding to almost complex, stable complex, and spinc quan-
tizations. For even dimensional spinc manifolds, Fuchs proved a Kostant type
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formula and got a cutting formula by the Kostant formula in [6]. On the other
hand, Freed [5] proved an index theorem for odd spin manifolds with involution
and Fang proved an equivariant odd index theorems for Toeplitz operators in
[4]. Liu and Wang extended the Freed odd index theorem to the equivariant
case and proved the Atiyah-Hirzebruch type theorems for odd spin manifolds
in [15]. So a natural question is that whether we can prove an odd geometric
quantization formula by equivariant odd index theorems or not. In this paper,
we give a positive answer.

In Section 2, we prove spinc versions of equivariant odd index theorems in
[4] and [5] and we prove an odd geometric quantization formula by these equi-
variant odd index theorems. In Section 3, we prove two Kostant type formulas.
As a corollary, we get a cutting formula for the odd spinc quantization.

2. A Guillemin-Sternberg geometric quantization formula for circle
action on odd dimensional spinc-manifolds

2.1. Equivariant odd index theorems

In this section, we firstly give spinc versions of the equivariant odd index
theorems in [4] and [5]. Let M be a closed oriented spinc manifold of di-
mension 2r + 1, with a fixed spinc structure associated to the complex line
bundle L. Let △(TM) be the canonical complex spinors bundle of M . Let
D be the associated spinc Dirac operator which is a self adjoint first order
elliptic differential operator acting on Γ(△(TM)) (the smooth sections space
of △(TM)), so it induces a spectral decomposition of L2(△(TM)) which is
the L2 completion of Γ(△(TX)). Denote by L2

+(△(TM)) the direct sum of
eigenspaces of D associated to nonnegative eigenvalues, and by P+ the orthog-
onal projection operator from L2(△(TM)) to L2

+(△(TM)). Given a trivial

complex vector bundle CN over M , D and P+ extend trivially as operators on
Γ(△(TM) ⊗ CN ). Let g : M → U(N) be a smooth map. Then g extends to
an action on Γ(△(TM)⊗ CN ) as Id(△(TM)) ⊗ g, still denoted by g.

Definition 2.1. The Toeplitz operator associated to D and g is

Tg = (P+ ⊗ IdCN )g(P+ ⊗ IdCN ) : L2
+(△(TM)⊗ CN ) → L2

+(△(TM)⊗ CN ).

It is a classical fact that Tg is a bounded Fredholm operator between the given
Hilbert spaces.

Let H be a compact group of isometries of M preserving the orientation and
spinc structure and there is a lift action on L. There is a lift of h ∈ H acting on
Γ(△(TM)) which commutes with D, so it commutes with P+. We also assume
that

(2.1) g(hx) = g(x) for any h ∈ H and any x ∈ X.

Then,

Tgh = hTg.
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Definition 2.2. Spinc quantization of M is defined by the virtual complex
H-representive space Q(M,Tg, P ) := ker(Tg)− coker(Tg), where P is the fixed

spinc structure of M . Denote its H-trivial component by Q(M,Tg, P )S
1

. The
equivariant index associated to Tg and h is defined by

(2.2) IndhTg = tr(h|ker(Tg))− tr(h|coker(Tg)).

Next we assume H = S1 and let h0 = e2πit be a generator of the circle
group which means that a subgroup generated by h0 is dense in S1. Let F be

the connect component of the fixed point set MS1

under S1 action. Then the
tangent bundle TM |F has a decomposition into sum:

(2.3) TM |F = E1 ⊕ · · · ⊕ EsF ⊕ TF,

where E1 · · ·EsF are S1-complex line bundles. Let h0 act on Ej by e2πitmj ,
mj > 0 ∈ Z (we can make mj > 0 by choosing the complex structure of Ej)

and c1(Ej) = 2π
√
−1xj . Let c1(L|F ) = 2π

√
−1c and h0 act on L|F by e2π

√
−1lt.

Let Â(F ) be the Â characteristic form on TF and let ch(g) be the odd Chern
character of g (cf. [22]). The complex structure on the normal bundle N(F )
and the orientation on TF induced by the equivariant spinc structure give an
orientation on TM |F . We let (−1)F be +1 if this orientation is the given
orientation on M , and −1 otherwise. Then similar to Theorem 1.4 in [4], we
have:

Proposition 2.3.

Indh0Tg =
∑

F⊂MS1

(−1)F · (−1)sF
∫
F

ch(g)Â(TF )

(2.4) ·
sF∏
j=1

1

eπ
√
−1(xj+mjt) − e−π

√
−1(xj+mjt)

eπ
√
−1(c+lt).

Proof. Locally, we can consider D as a Dirac operator twisting a line bun-
dle, then by Theorem 2.3 in [15] and Chern root algorithm, we can get this
proposition. □

For any z = hm
0 and an integer m, then z is also a generator of S1. By (2.4),

we have

(2.5) indz(Tg) =
∑

F⊂MS1

(−1)F · (−1)sF ASF,g(z),

where

ASF,g(z) :=

∫
F

ch(g)Â(TF ) ·
sF∑
j=1

1

zmj/2e
√
−1πxj − z−mj/2e−

√
−1πxj

eπ
√
−1cz

l
2 .

In the following, we prove the equivariant spinc version of the odd index
theorem for Dirac operators with involution parity (see the following (2.7))
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in [5]. As before, let M be a closed oriented spinc manifold of dimension
2r + 1, with a fixed spinc structure P associated to the complex line bundle
L. A compact group H of isometries of M preserves the orientation and spinc

structure. There is a lift of h ∈ H acting on Γ(△(TM)) which commutes with
D.

Suppose that τ : M → M is an orientation-reversing isometric involution
which has a lift of τ on L and preserves the Pinc structure induced by the Spinc

structure and commutes with any h ∈ H. We may take ∇L as τ -invariant and
H-invariant Hermitian connection. As in [5], there exists a self-adjoint lift
τ : Γ(M ;∆(TM)) → Γ(M ;∆(TM)) satisfying

(2.6) τ2 = 1; Dτ = −τD, τh = hτ.

Then the +1 and −1 eigenspaces of τ give a splitting of the twisted spinor
fields

(2.7) Γ(M ;∆(TM)) ∼= Γ+(M ;∆(TM))
⊕

Γ−(M ;∆(TM))

and the Dirac operator interchanges Γ+(M ;∆(TM)) and Γ−(M ;∆(TM)). By
(2.6), h preserves Γ+

−(M ; ∆(TM)). The associated equivariant index is defined
by

(2.8) indexh[D
+ : Γ+(M ;∆(TM)) → Γ−(M ;∆(TM))],

and the associated Spinc quantization of M is defined by virtual complex H-

representive space Q̃(M,P ) = ker(D+) − ker(D−). The simplest example is
X = M × S1 with τ the reflection x → −x on S1 and H = S1 acting on the
even dimensional spinc manifold M . Then for S1 acting on M , we have:

Lemma 2.4. The following statements hold:
a) Let F (·) denote a fix point set. Then

F (hmτ) = F (hτ) = F (S1) ∩ F (τ) for any m ∈ Z,

b) Let N(τh) denote the normal bundle on F (τh). Then N(τh) has a τS1-
invariant decomposition N(τh) = N0 ⊕1≤j Nj, where N0 is a real vector bun-
dle and Nj is a complex line bundle and τh acts on N0 by −1 and Nj by

e2πi(mjt+aj), where mj > 0 ∈ Z and aj = 0 or 1
2 .

Proof. a) If hτx = x, then (hτ)2x = x. Since τ2 = id; τh = hτ , we know
h2x = x. Since F (hm) = F (h) = F (S1), we have hx = x and τx = x. Thus
F (hτ) ⊂ F (S1)∩F (τ) and the inverse inclusion is trivial. Similarly we can get
F (hmτ) = F (S1) ∩ F (τ).

b) By a), we have N(hτ) is a S1-representative bundle, so N(hτ) has a S1-
invariant decomposition N0 ⊕1≤j Nj and N0 is a real vector bundle and Nj is
an oriented 2-plane bundle and h acts on N0 by 1 and Nj by e2πimjt, where
mj ̸= 0 ∈ Z. Since τ is an involution isometry and commutes with h, so τ
preserves the above decomposition acting by +1 or −1. □
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Let 2bF + 1 be the dimension for the bundle N0 and 2cF be the real di-
mension for the bundle which τh acts on by e2πi(mjt+

1
2 ), mj > 0. 2dF is the

real dimension for the bundle which τh acts on by e2πimjt, mj > 0. Let the
connection matrix of N0 be given formally as

0 x1

−x1 0
. . .

0 xbF

−xbF 0
0 0 0 0


.

Let y1, . . . , ycF , w1, . . . , wdF
be the associated Chern roots of above complex

bundles respectively by the splitting principle (see [13, p. 227]). Define sF =
codimF (hτ)−1

2 and similarly define (−1)F as in (2.4). Let c be the first Chern

form of L|F (τh) and τh act on L|F (τh) by e2
√
−1(lt+b) where l ∈ Z and b = 0 or

1
2 . We have the following formula by the method in [12] for any z = hm ∈ S1.

Proposition 2.5.

indz(D
+) =

∑
F⊂MS1∩F (τ)

(−1)F ·(−1)sF
∫
F (S1)∩F (τ)

i−(bF+cF+1)Â(F (S1)∩F (τ))

·z l
2 eπ

√
−1b+ 1

2 c
bF∑
j=1

1

eiπxj + e−iπxj

cF∑
α=1

1

zmα/2eiπyα + z−mα/2e−iπyα

(2.9) ·
dF∑
β=1

1

zmcF +β/2eiπwβ − z−mcF +β/2e−iπwβ
.

Proof. We can consider D as a Dirac operator twisting a line bundle, then by
Theorem 4.1 in [15] and Chern root algorithm, we can get this proposition. □

2.2. A geometric quantization formula

We firstly recall some definitions and properties on reduction in [1].

Definition 2.6. A reducible hypersurface in M is a co-oriented submanifold
Z of codimensional one that is invariant under the S1 action and on which this
action is free. The reduction of M at Z by the circle action, Mred := Z/S1.

Definition 2.7. A reducible hypersurface Z is splitting if its complement,
M\Z, is a disjoint union of two (not necessarily connected) open pieces, M+

and M−, such that positive normal vectors to Z point into M+ and negative
normal vectors point into M−. We then say that Z splits M into M+ and M−.
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Example. Let Φ : M → R be a smooth S1-invariant function. Assume that 0
is a regular value for Φ and that S1 acts freely on the level set Φ−1(0). Then
Z = Φ−1(0) is a reducible hypersurface, and it splits M into M+ := Φ−1(0,∞)
and M− := Φ−1(−∞, 0). Conversely, every reducible splitting hypersurface
can be obtained in this way.

The orientation, the Riemannian metric and the spinc structure on M deter-
mine the reduced orientation, the reduced Riemannian metric and the reduced
spinc structure Pred on Mred (for details, see [1]). By h0 acts on LF by hl

0 in
Definition 2.2, so the fibre weight (see Remark 4.3 in [1]) is l. Since the unitary
matrix g is S1-invariant, it determines a unitary matrix gred on Mred. Now we
can state our quantization formula.

Theorem 2.8. Let the circle act on a compact oriented odd dimensional Rie-
mannian manifold. Let P be the equivariant spinc structure on M . Let Z be
a reducible hypersurface that splits into M+ and M−. Assume the following
conditions are satisfied for every component F of the fixed point set:

(2.10) l ≥
∑

|mj | =⇒ F ⊂ M+; l ≤ −
∑

|mj | =⇒ F ⊂ M−,

then

(2.11) dimQ(M,Tg, P )S
1

= dimQ(Mred, Tgred , Pred).

Example 1. Let S1 act on any odd dimensional spin manifolds, consider the
spinc bundle with trivial associated line bundle. The criteria are automatically
satisfied on every fixed point set, so the quantization formula is true. In fact, by
the odd dimensional Aiyah-Hirzebruch theorem, we know that both are trivial.

Example 2. Let M = N1×N2 where N1 and N2 are even and odd dimensional
spinc manifolds respectively. Let S1 act on N1 satisfying the condition (2.10)
(for such examples, see [1]) and S1 act on N2 trivially.

We recall the definitions of the cut spaces. We can assume that Z is the
zero level set of an invariant function Φ : M → R for which 0 is a regular value,
and that M+ := Φ−1(0,∞) and M− := Φ−1(−∞, 0). Consider the product
M ×C with the circle action, a · (m, z) = (a ·m, a−1 · z), and with the function

Φ̃(m, z) := |z|2 − Φ(m). It is easy to check that 0 is a regular value for Φ̃ and

that S1 acts freely on the zero level set of Φ̃, Z̃ = {(m, z)| Φ(m) = |z|2}. The
cut space defined by M+

cut := Z̃/S1 is a smooth compact manifold. Let S1 act
on M+

cut by λ · [m, z] = [λ · m, z] = [m,λ · z]. The cut space M−
cut is defined

similarly, using the diagonal action on M × C, a · (m, z) = (a · m, a · z), and
M−

cut := {(m, z)| Φ(m) = |z|2}/S1. Let S1 act onM−
cut by λ·[m, z] = [λ·m, z] =

[m,λ−1 ·z]. We let g(m, z) = g(m). By g is S1-invariant, we have g(a·(m, z)) =
g(m, z), so we can get a g+cut on M+

cut by descending g. It is obvious that g+cut
is S1-invariant. Similarly, we can get a g−cut on M−

cut which is S1-invariant.

Define the embedding i+ : M+ → M+
cut by i+(m) := [(m,

√
Φ(m))], and the
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map ired : Mred → M+
cut by ired([m]) := [(m, 0)]. It is obvious that

(2.12) g|M+ = i∗+g
+
cut; i∗redg

+
cut = gred.

We can define g−cut similarly.
We extend the both hands of (2.5) to the meromorphic functions on the

complex plane. Since they are equal on the group generated by h, they must

be equal on the complex plane. dimQ(M,Tg, P )S
1

is equal to the coefficient
of 1 in the Taylor expansion of this meromorphic function. As in [1], we now
expand (2.5) into a formal power series in z−1. If mj > 0, then

(2.13)

1

zmj/2e
√
−1πxj − z−mj/2e−

√
−1πxj

= z−mj/2e−
√
−1πxj (1 + e−2

√
−1πxjz−mj + e−4

√
−1πxjz−2mj + · · · ).

If mj < 0, then

(2.14)

1

zmj/2e
√
−1πxj − z−mj/2e−

√
−1πxj

= − zmj/2e
√
−1πxj (1 + e2

√
−1πxjzmj + e4

√
−1πxjz2mj + · · · ).

So

(2.15) AsFi,g(z) = z
1
2 (l−

∑
|mj |)

∫
Fi

(c+ c′z−1 + c”z−2 + · · · ),

where c′, c” denotes some cohomology classes. A similar computation, when
we expand in power of z, give the

(2.16) AsFi,g(z) = z
1
2 (l+

∑
|mj |)

∫
Fi

(c+ c′z + c”z2 + · · · ).

By (2.15) and (2.16), we have:

Lemma 2.9. Let S1 act on a smooth odd dimensional spinc manifold. Let P
be an equivariant spinc structure on M .

1. When we expand the index formula (2.5) as a formal power series in

z, the fixed point component F does not contribute to dimQ(M,Tg, P )S
1

if
l > −

∑
|mj |.

2. When we expand the index formula (2.5) as a formal power series in

z−1, the fixed point component F does not contribute to dimQ(M,Tg, P )S
1

if
l <

∑
|mj |.

Proof of Theorem 2.8. Let Z be a reducible hypersurface that splits M into
M+ and M−. By S1 acts on Z freely, so F ⊂ M+ ∪ M−. So the condition
(2.10) is equivalent to the following condition:

(2.17) F ⊂ M+ =⇒ l > −
∑

|mj |; F ⊂ M− =⇒ l <
∑

|mj |.
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By Lemma 2.9 and (2.17), fix points inM− contribute nothing toQ(M,Tg, P )S
1

when we take the expansion in z−1; that is
(2.18)

dimQ(M,Tg, P )S
1

=
∑

F⊂M+

coefficient of 1 in the expansion of ASF,g(z)
as a formal power series in z−1.

Now consider the cut space, M+
cut (In [1], they use Mcut). By Proposition 6.1

in [1], the set of fixed points inM+
cut is the unionM+,S1

cut = i+(M
S1

+ )∪ired(Mred),

where MS1

+ is the set of fixed points in M+ and for i+ : M+ → M+
cut and

ired : Mred → M+
cut, see p. 544 in [1]. Let us denote by F ′ and X ′, respectively,

the images in Mcut of connected components F of MS1

+ and X of Mred. Then

(2.19)

dimQ(M+
cut, Tg+

cut
, P+

cut)
S1

=
∑

F⊂M+

coefficient of 1 in the expansion of ASF ′,g+
cut

(z)

as a formal power series in z−1

+
∑

X⊂Mred

coefficient of 1 in the expansion of ASX′,g+
cut

(z)

as a formal power series in z−1,

where ASF ′,g+
cut

(z) denotes a expansion term of the equivariant index of the

Toeplitz operator on M+
cut associated to g+cut. By (2.12), we have ch(g) =

i∗+chgcut. Since i+ is a S1 equivariant embedding, so we use the definition of
ASF,g(z) and the Pincaré dual, we get ASF ′,g+

cut
(z) = ASF,g(z). Let X be a

connected component of Mred, let X ′ := ired(X) be its image in M+
cut. Let

N := Z ×S1 C be a line bundle over X. Let L be a complex line bundle
associated to the spinc structure on M and Lred := i∗L/S1 over Mred := Z/S1,
where i : Z → M is the conclusion of a reducible hypersurface. Let Lcut be
the associated line bundle to the induce spinc structure over M+

cut, then by
Proposition 6.1 4) in [1], we have i∗redLcut

∼= Lred ⊗ N. By (2.12), we have
ch(gred) = i∗redchgcut. So by Proposition 6.1 2) in [1] and the Pincaré dual,
similar to the computation of (7.14) in [1], we get
(2.20)

ASX′,g+
cut

(z) = −
∫
X

exp(
1

2
c1(Lred))Â(X)ch(gred)(1 + cz−1 + c′z−2 + · · · ),

where c1(Lred) denotes the first Chern class. By applying the (non-equivariant)
odd Atiyah-Singer formula to Mred, we get

(2.21)

− dimQ(Mred, Tgred , Pcut)

=
∑

X⊂Mred

coefficient of 1 in the expansion of ASX′,g+
cut

(z)

as a formal power series in z−1.



GEOMETRIC QUANTIZATION OF ODD DIMENSIONAL SPINc MANIFOLDS 231

By (2.18), (2.19) and (2.21), we get
(2.22)

dimQ(M+
cut, Tg+

cut
, P+

cut)
S1

= dimQ(M,Tg, P )S
1

− dimQ(Mred, Tgred , Pred).

Now we consider the expansion in z. For every fixed component of the form
F ′ = i+(F ), for F ⊂ M+, the first condition of (2.17) and Lemma 2.9 implies
that this fixed point set does not contribute. Similarly, consider a fixed com-
ponent of form X ′ = ired(X) for X ⊂ Mred. Its fibre weight is 1 by Proposition
6.1 2) in [1]. By part 1 of Lemma 2.9, X ′ does not contribute either. Therefore

dimQ(M+
cut, Tg+

cut
, P+

cut)
S1

= 0. So we have

dimQ(M,Tg, P )S
1

= dimQ(Mred, Tgred , Pred). □

3. The Kostant type formulas

Let δ ∈ Z be an integer as a weight of circle group and denote by n(δ,Q(M,
Tg)) the multiplicity of this weight in Q(M,Tg). If we assume that dimF = 1,

then sF = r. We define the partition function NF : {m+ 1
2n| m,n ∈ Z} → Z+

by setting

NF (β) =

∣∣∣∣∣∣
(k1, . . . , kr) ∈ (Z+ 1

2 )
r : β +

r∑
j=1

kjmj,F = 0, kj > 0


∣∣∣∣∣∣ .

The right hand side is always finite since mj,F > 0.

Theorem 3.1 (Kostant formula).

(3.1) n(δ,Q(M,Tg)) = (−1)r
∑

F⊂MS1

(−1)FNF (δ −
1

2
lF )

∫
F

ch(g).

Proof. It is obvious that n(δ,Q(M,Tg)) is the coefficient of zδ in the Taylor
expansion of

∑
F⊂MS1 (−1)F · (−1)sFASF,g(z). By dimF = 1 and the formula

(2.5), we get

(3.2) ASF,g(z) = z
1
2 (lF−

∑r
j=1 mj,F )

r∏
j=1

1

1− z−mj,F

∫
F

ch(g).

Note that when |z| > 1, we have

r∏
j=1

1

1− z−mj,F
=

∑
NF (δ) · zδ,

where NF (δ) is the number of non-negative integer solutions (k1, . . . , kr) ∈
(Z+)r to δ +

∑r
j=1 kjmj,F = 0. By (3.2) and Lemma 5.0.1 in [6], then∑

F⊂MS1

(−1)F · (−1)sFASF,g(z)
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= (−1)r
∑

F⊂MS1

(−1)F
∑
δ

NF (δ)z
δ+ 1

2 (lF−
∑r

j=1 mj,F )

∫
F

ch(g)

= (−1)r
∑

F⊂MS1

(−1)F
∑
δ

NF (δ −
1

2
lF +

1

2

r∑
j=1

mj,F )z
δ

∫
F

ch(g)

= (−1)r
∑

F⊂MS1

(−1)F
∑
δ

NF (δ −
1

2
lF )z

δ

∫
F

ch(g).

So we get the Kostant formula. □

Remark. By dimF = 1, so F = S1. We note that∫
F

ch(g) =

∫
F

Â(F )ch(g) = indTg,

so
∫
F
ch(g) is an integer. For example, we take g : S1 → S1; eiθ → einθ, then∫

F
ch(g) = n.

By the formula (2.9), we can get another Kostant formula. Assume that the
fixed points F (S1) ∩ F (τ) are isolated. So by the formula (2.9) and using the
geometric series

1

1− z
=

∞∑
l=0

zl;
1

1 + z
=

∞∑
l=0

(−1)lzl,

we get
(3.3)

indz(D
+)

= (−1)r
∑

F⊂MS1∩F (τ)

(−1)F i−(bF+cF+1)eπ
√
−1bF

∑
δ

zδ+
l
2−

1
2

∑cF +dF
j=1 mj,F Ñ(δ),

where Ñ(δ) =
∑

(−1)k1+···+kcF and the sum is taken over β+
∑cF+dF

j=1 kjmj,F =

0 and kj ≥ 0. Let Ñ0(δ) =
∑

(−1)k1+···+kcF where the sum is taken over

β +
∑cF+dF

j=1 (kj +
1
2 )mj,F = 0 and kj ≥ 0. So we get:

Lemma 3.2 (Kostant formula).

(3.4) n(δ, Q̃(M)) = (−1)r
∑

F⊂MS1∩F (τ)

(−1)F i−(bF+cF+1)eπ
√
−1bF Ñ0(δ −

lF
2
).

Next we consider the non-isolated fixed points cases. Define the following
set

Sδ,sF =

(k1, . . . , ksF ) ∈ (Z+ 1
2 )

sF : δ +

sF∑
j=1

kjmj,F = 0, kj > 0


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and for each tuple k = (k1, . . . , ksF ), let

pk,F = (−1)sF
∫
F

ch(g)Â(F )eπ
√
−1c−

∑
π
√
−1xje−2

∑
j kjπ

√
−1xj .

Now define
−→
N F (δ) =

∑
k∈Sδ,sF

pk,F . Using the same trick as in the isolated

fixed points case, we get:

Theorem 3.3 (Kostant formula).

(3.5) n(δ,Q(M,Tg)) = (−1)r
∑

F⊂MS1

(−1)F
−→
NF (δ −

1

2
lF ).

Let

pk,F = (−1)sF
∫
F

i−(bF+cF+1)Â(F )eπ
√
−1b+ 1

2 c
bF∑
j=1

1

eiπxj + e−iπxj

·(−1)k1+···+kcF e−2
∑

α kαπ
√
−1yα−2

∑
β kβ+cF

π
√
−1wβ ,

and
−→
N 0

F (δ) =
∑

k∈Sδ,cF +dF
pk,F , then we get:

Theorem 3.4 (Kostant formula).

(3.6) n(δ, Q̃(M)) =
∑

F⊂MS1∩F (τ)

(−1)F
−→
N 0

F (δ −
lF
2
).

By Theorem 3.3, repeating the discussions in [6], we can get:

Theorem 3.5 (Cutting formula).

(3.7) n(δ,Q(M,Tg)) = n(δ,Q(M+
cut, Tg+

cut
)) + n(δ,Q(M−

cut, Tg−
cut

)).

Remark. If we assume that the involution can descend to an involution on
Mred, then we can get a cutting formula for Q̃. We may also consider the odd
signature quantization as in [9].
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