DOI QR코드

DOI QR Code

Effect of Electrolytes on Electrochemical Properties of Magnesium Electrodes

  • Ha, Se-Young (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ryu, Anna (Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Cho, Woosuk (Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Woo, Sang-Gil (Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Jae-Hun (Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Lee, Kyu Tae (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jeom-Soo (Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Choi, Nam-Soon (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2012.11.14
  • 심사 : 2012.12.04
  • 발행 : 2012.12.31

초록

Magnesium (Mg) deposition and dissolution behaviors of 0.2 M $MgBu_2-(AlCl_2Et)_2$, 0.5 M $Mg(ClO_4)_2$, and 0.4M $(PhMgCl)_2-AlCl_3$-based electrolytes with and without tris(pentafluorophenyl) borane (TPFPB) are investigated by ex situ scanning electron microscopy (SEM) and galvanostatic cycling of Mg/copper (Cu) cells. To ascertain the factors responsible for the anodic stability of the electrolytes, linear sweep voltammogrametry (LSV) experiments for various electrolytes and solvents are conducted. The effects of TPFPB as an additive on the anodic stability of 0.4M ($(PhMgCl)_2-AlCl_3$/THF electrolyte are also discussed.

키워드

참고문헌

  1. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, Nature, 407, 724 (2000). https://doi.org/10.1038/35037553
  2. M. Matsui, J. Power Sources, 196, 7048 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.141
  3. Y. kumar, S. A. Hashmi and G. P. Pandey, Electrochim. Acta, 56, 3864 (2011). https://doi.org/10.1016/j.electacta.2011.02.035
  4. J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek and Y. Kotani, Energy Environ. Sci., 5, 5941 (2012). https://doi.org/10.1039/c2ee03029b
  5. Z. Lu, A. Schechter, M. Moshkovich and D. Aurbach, J. Electroanal. Chem., 466, 203 (1999). https://doi.org/10.1016/S0022-0728(99)00146-1
  6. D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H. E. Gottlieb, Y. Gofer and I. Goldberg, J. Electrochem. Soc., 149, A115 (2002). https://doi.org/10.1149/1.1429925
  7. X. Sun. H.S. Lee, X.Q. Yang and J. McBreen, Electrochem. Solid-State Lett., 5, A248 (2002). https://doi.org/10.1149/1.1510321
  8. X. Sun. H.S. Lee, X.Q. Yang and J. McBreen, Electrochem. Solid-State Lett., 6, A43 (2003). https://doi.org/10.1149/1.1536475
  9. N.-S. Choi, S.-W. Ryu and J.-K. Park, Electrochim. Acta, 53, 6575 (2008). https://doi.org/10.1016/j.electacta.2008.04.070
  10. O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad and D. Aurbach, J. Electrochem. Soc,. 155, A103 (2008). https://doi.org/10.1149/1.2806175
  11. N. Pour, Y. Gofer, D. T. Major and D. Aurbach, J. Am. Chem. Soc., 133, 6270 (2011). https://doi.org/10.1021/ja1098512
  12. D. Aurbach, Y. Gofer, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, M. Moshkovich and R. Turgeman, J. Power Sources, 97-98, 269 (2001). https://doi.org/10.1016/S0378-7753(01)00622-X
  13. J. Gnanaraj, V. Pol, A. Gedanken and D. Aurbach, Electrochem. Commun., 5, 940 (2003). https://doi.org/10.1016/j.elecom.2003.08.012
  14. D. Aurbach, Y. Cohen and M. Moshkovich, Electrochem. Solid-State Lett., 4, A113 (2001). https://doi.org/10.1149/1.1379828
  15. H. Gizbar, Y. Vestfrid, O. Chusid, Y. Gofer, H. E. Gottlieb, V. Marks and D. Aurbach, Organometallics, 23, 3826 (2004). https://doi.org/10.1021/om049949a