DOI QR코드

DOI QR Code

An Acoustic Echo Canceller for Double-talk by Blind Signal Separation

암묵신호분리를 이용한 동시통화 음향반향제거기

  • Received : 2011.09.14
  • Accepted : 2011.10.04
  • Published : 2012.02.29

Abstract

This paper describes an acoustic echo canceller with double-talk by the blind signal separation. The acoustic echo canceller is deteriorated or diverged in the double-talk period. So we use the blind signal separation to estimate the near-end speech signal and to eliminate the estimated signal from the residual signal. The blind signal separation extracts the near-end signal with dual microphones by the iterative computations using the 2nd order statistical character. Because the mixture model of blind signal separation is multi-channel in the closed reverberation environment, we used the copied coefficients of echo canceller without computing the separation coefficients. By this method, the acoustic echo canceller operates irrespective of double-talking. We verified performances of the proposed acoustic echo canceller by simulations. The results show that the acoustic echo canceller with this algorithm detects the double-talk periods thoroughly, and then operates stably in the normal state without the divergence of coefficients after ending the double-talking. And it shows the ERLE of averagely 20dB higher than the normal LMS algorithm.

본 논문은 암묵신호분리방법을 이용하여 동시통화를 가능하게 하는 음향반향제거기에 관한 것이다. 음향반향 제거기는 동시통화 구간에서 성능이 저하되거나 발산하게 된다. 그래서 근단화자신호를 추정해서 잔차신호로부터 차감하기 위하여 암묵신호분리방법을 사용한다. 암묵신호분리방법은 이중 마이크를 가지고 2차 통계적 성질을 이용한 반복적인 계산에 의해 근단화자신호를 추정해낸다. 그런데 폐쇄된 반향환경에서 암묵신호분리의 혼합모델은 다채널이기 때문에 분리계수를 직접 계산하지 않고 반향제거기의 계수를 복사하여 그대로 사용한다. 많은 시뮬레이션을 통하여 제안한 음향반향제거기의 성능을 검증하였다. 시뮬레이션 결과, 이 방법을 사용한 음향반향제거기는 동시통화의 유무에 상관없이 안전하게 동작하고, 일반적인 LMS 알고리즘에 비해 ERLE가 평균 20dB 향상되는 것으로 나타났다.

Keywords

References

  1. S. Minami, T. Kawasaki, "A Double Talk Detection Method for an Echo Canceller," ICC'85, pp.1492-1497, 1985.
  2. Hua Ye, Bo-Xiu Wu, "A New Double-Talk Detection Algorithm Based on the Orthogonality Theorem," IEEE Trans. on Comm., vol.39, no.11, pp.1542-1545, Nov. 1991. https://doi.org/10.1109/26.111430
  3. Wenbin Hsu, Frank Chui, David A. Hodges, "An Acoustic Echo Canceler," IEEE J. of Solid-state Circuits, vol.24, no.6, pp.1639-1646, Dec. 1989. https://doi.org/10.1109/4.45000
  4. P. Comon, "Independent component analysis, A new concept," Signal Processing, vol.36, pp.287-314, 1994. https://doi.org/10.1016/0165-1684(94)90029-9
  5. C. Jutten and J. Herault, "Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture," Signal Processing, vol.24, no.1, pp.1-10, Jul. 1991. https://doi.org/10.1016/0165-1684(91)90079-X
  6. Bell A. J., Sejnowski T. J., "An Information Maximization Approach to Blind Separation and Blind Deconvolution," Neural Computation, vol.7, pp.1129-1159, 1995. https://doi.org/10.1162/neco.1995.7.6.1129
  7. Kari Torkkola, "Blind Separation of Convolved Sources Based on Information Maximization," Neural Networks for Signal Processing, IEEE Signal Processing Society Workshop, 1996.
  8. D.W.E. Schobben, P. "Sommen, A frequency domain blind signal separation method based on decorrelation," IEEE Trans. Signal Process., vol.50, no.8, pp.1855-1865, 2002. https://doi.org/10.1109/TSP.2002.800417
  9. M. Kawamoto, K. Matsuoka, et al., "A method of blind separation for convolved non-stationary signals," Neuro-computing, vol.22, pp.157-171, 1998. https://doi.org/10.1016/S0925-2312(98)00055-1
  10. L. Parra, C. Spence, "Convolutive blind separation of non-stationary sources," IEEE Trans. Speech Audio Process., vol.8, no.3, pp.320-327, 2000. https://doi.org/10.1109/89.841214
  11. E. Weinstein, M. Feder, A.V. Oppenheim, "Multichannel signal separation by decorrelation," IEEE Trans. Speech Audio Process., vol.1, no.4, pp.405-413, 1993. https://doi.org/10.1109/89.242486
  12. D. Yellin, E. Weinstein, "Multichannel signal separation: methods and analysis," IEEE Trans. Signal Process., vol.44, no.1, pp.106-118, 1996. https://doi.org/10.1109/78.482016

Cited by

  1. 음향반향제거기에서 암묵신호분리를 이용한 동시통화처리 vol.12, pp.1, 2016, https://doi.org/10.17662/ksdim.2016.12.1.043