Abstract
This study constructs an expert search system which has a mutual cooperation function based on thesis and author profile. The proposed methodology is as follows. First, we propose weighting method which can search a keyword and the most relevant keyword. Second, we propose a method which can search the experts efficiently with this weighting method. On the preferential basis, keywords and author profiles are extracted from the papers, and experts can be searched through this method. This system will be available to many fields of social network. However, this information is distributed to many systems. We propose a method using multi-ontology to integrate distributed data. The multi-ontology is composed of meta ontology, instance ontology, location ontology and association ontology. The association ontology is constructed through analysis of keyword association dynamically. An expert network is constructed using this multi-ontology, and this expert network can search expert through association trace of keyword. The expert network can check the detail area of expertise through the research list which is provided by the system.
본 연구는 연구논문 및 저자 프로파일을 기반으로 상호 협력이 가능한 전문가 검색 시스템을 구축한다. 제안한 방법론은 다음과 같다. 첫째, 입력 키워드와 가장 연관성 높은 키워드를 검색하기 위한 가중치 부여 기법을 제안하고, 둘째, 이 기법을 통해 전문가를 효율적으로 검색하는 방안을 제안한다. 우선적으로 논문에서 키워드와 저자 프로파일을 추출하고, 이를 통하여 전문가를 검색할 수 있도록 한다. 이것은 소셜 네트워크의 여러 분야에서 활용할 수 있다. 이러한 정보는 여러 시스템에 분산되어 있다. 이렇게 분산된 데이터를 통합하기 위한 기술로 멀티 온토롤지를 이용하는 기법을 제안한다. 멀티 온톨로지는 메타 온톨로지, 인스턴스 온톨로지, 로케이션 온톨로지와 연관관계 온톨로지로 구성되고, 연관관계 온톨로지는 동적으로 키워드 연관관계 분석을 통해 구축된다. 이 멀티 온톨로지를 이용하여 전문가 망을 제공하고, 이것은 키워드의 연관관계 추적을 통한 전문가 검색이 가능하도록 한다. 이를 통하여 전문가들의 연구물을 확인할 수 있도록 제공함으로써 세부 전문분야를 확인할 수 한다.