DOI QR코드

DOI QR Code

Photopolymer-based Surface-normal Input/Output Volume Holographic Grating Coupler for 1550-nm Optical Wavelength

  • Lee, Kwon-Yeon (Department of Electronic Engineering, Sunchon National University) ;
  • Jeung, Sang-Huek (Department of Electronic Engineering, Sunchon National University) ;
  • Cho, Byung-Mo (Department of Electronic Engineering, Sunchon National University) ;
  • Kim, Nam (Department of Computer and Communication, Chungbuk National University)
  • Received : 2011.11.15
  • Accepted : 2012.01.04
  • Published : 2012.03.25

Abstract

A surface-normal input/output volume holographic grating coupler (VHGC) operating at 1550nm wavelength region by using a $10{\mu}m$-thick DuPont photopolymer film is designed and fabricated. The angular and wavelength responses of the input/output VHGC are investigated in order to validate applicability of this device in integrated optics and optical communications. The effect of incident-beam position on the output reflectance to determine optimum condition for input coupling is also presented. The fabricated input/output VHGC exhibited an angular selectivity of ${\sim}0.027^{\circ}$, a wavelength selectivity of ~0.8 nm, and an output peak reflectance of 34.13%.

Keywords

References

  1. M. L. Jones, R. P. Kenan, and C. M. Verber, "Rectangular characteristic gratings for waveguide input and output coupling," Appl. Opt. 34, 4149-4158 (1995). https://doi.org/10.1364/AO.34.004149
  2. S. D. Wu and E. N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Appl. Opt. 43, 1009-1023 (2004). https://doi.org/10.1364/AO.43.001009
  3. S. D. Wu, E. N. Glytsis, and T. K. Gaylord, "Optimization of finite-length input volume holographic grating couplers illuminated by finite-width incident beams," Appl. Opt. 44, 4435-4446 (2005). https://doi.org/10.1364/AO.44.004435
  4. A. H. Phan, N. Kim, J. H. Park, and K. Y. Lee, "Inputoutput coupler system with 45-degree slant angle based on Bragg hologram," J. Opt. Soc. Korea 13, 123-130 (2009). https://doi.org/10.3807/JOSK.2009.13.1.123
  5. A. H. Phan, D. D. Do, N. Kim, J. H. Park, and K. Y. Lee, "Input-output coupler working at a1550nm wavelength using multi-holographic Bragg gratings," in Proc. IEEE International Conference on Advanced Technologies for Communications (Hanoi, Vietnam, Oct. 2008), pp. 132-135.
  6. R. A. Villalaz E. N. Glytsis, T. K. Gaylord, and T. Nakai, "Wavelength response of waveguide volume grating couplers for optical interconnects," Appl. Opt. 43, 5162-5167 (2004). https://doi.org/10.1364/AO.43.005162
  7. W. Driemeier, "Bragg-effect grating couplers integrated in multicomponent polymeric waveguides," Opt. Lett. 15, 725-727 (1990). https://doi.org/10.1364/OL.15.000725
  8. Q. Huang and P. Ashley, "Holographic Bragg grating inputoutput couplers for polymer waveguides at an 850-nm wavelength," Appl. Opt. 36, 1198-1203 (1997). https://doi.org/10.1364/AO.36.001198
  9. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, "Design, fabrication, and performance of preferential-order volume grating waveguide couplers," Appl. Opt. 39, 1223-1232 (2000). https://doi.org/10.1364/AO.39.001223
  10. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
  11. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, "Shrinkage correction of volume phase holograms for optical interconnects," Proc. SPIE 3005, 224-229 (1997).
  12. H. Kogelnik and T. P. Sosnowski, "Holographic thin film couplers," Bell Syst. Tech. J. 49, 1602-1608 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01846.x

Cited by

  1. Holographic Reconstruction of Finite Airy Beams with Self-Healed and Multiplexed Features vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.793
  2. Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.242
  3. Holographic Lenses in an Environment-Friendly Photopolymer vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030302