DOI QR코드

DOI QR Code

Optical Modeling for Polarization-dependent Optical Power Dissipation of Thin-film Organic Solar Cells at Oblique Incidence

  • Kim, Jungho (Department of Information Display, Kyung Hee University) ;
  • Jung, Sungyeop (Department of Information Display, Kyung Hee University) ;
  • Jeong, Inkyung (Department of Information Display, Kyung Hee University)
  • 투고 : 2011.11.16
  • 심사 : 2012.01.05
  • 발행 : 2012.03.25

초록

We present the optical models and calculation results of thin-film organic solar cells (OSCs) at oblique incidence of light, using the transfer matrix method. The simple expression for the optical power dissipation is derived at oblique incidence for s- and p-polarized light. The spatial distribution of the electric field intensity, the optical power density, and the optical power dissipation are calculated in both s- and p-polarized light with respect to the incidence angle. We identify how the light absorption efficiency for p-polarized light becomes relatively larger than that for s-polarized light as the incidence angle increases.

키워드

참고문헌

  1. H. Hoppe and N. S. Sariciftci, "Organic solar cells: an overview," J. Mater Res. 19, 1924-1945 (2004). https://doi.org/10.1557/JMR.2004.0252
  2. V. Andersson, K. Tvingstedt, and O. Inganas, "Optical modeling of a folded organic solar cell," J. Appl. Phys. 103, 094520 (2008). https://doi.org/10.1063/1.2917062
  3. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, "Si nanopillar array optimization on Si thin films for solar energy harvesting," Appl. Phys. Lett. 95, 033102 (2009). https://doi.org/10.1063/1.3186046
  4. M. Niggemann, M. Riede, A. Gombert, and K. Leo, "Light trapping in organic solar cells," Phys. Stat. Sol. (a) 205, 2862-2874 (2008). https://doi.org/10.1002/pssa.200880461
  5. S. C. Kim and I. Sohn, "Simulation of energy conversion efficiency of a solar cell with gratings," J. Opt. Soc. Korea 14, 142-145 (2010). https://doi.org/10.3807/JOSK.2010.14.2.142
  6. L. A. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," J. Appl. Phys. 86, 487-496 (1999). https://doi.org/10.1063/1.370757
  7. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003). https://doi.org/10.1063/1.1534621
  8. N.-K. Persson, H. Arwin, and O. Inganas, "Optical optimization of polyfluorene-fullerene blend photodiodes," J. Appl. Phys. 97, 034503 (2005). https://doi.org/10.1063/1.1836005
  9. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, "Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells," J. Appl. Phys. 102, 054516 (2007). https://doi.org/10.1063/1.2777724
  10. D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans, and P. Heremans, "The angular response of ultrathin film organic solar cells," Appl. Phys. Lett. 92, 243310 (2008). https://doi.org/10.1063/1.2949745
  11. A. Meyer and H. Ade, "The effect of angle of incidence on the optical field distribution within thin film organic solar cells," J. Appl. Phys. 106, 113101 (2009). https://doi.org/10.1063/1.3253718
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, New Jersey, USA, 2007), Chapter 6.
  13. M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385 (2008). https://doi.org/10.1364/OE.16.005385
  14. P. D. Andersen, J. C. Skarhoj, J. W. Andreasen, and F. C. Krebs, "Investigation of optical spacer layers from solution based precursors for polymer solar cells using x-ray reflectometry," Opt. Mater. 31, 1007-1012 (2009). https://doi.org/10.1016/j.optmat.2008.11.014

피인용 문헌

  1. Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study vol.5, pp.7, 2015, https://doi.org/10.1063/1.4928074
  2. A Generalized Fabry–Pérot Formulation for Optical Modeling of Organic Light-Emitting Diodes Considering the Dipole Orientation and Light Polarization vol.8, pp.2, 2016, https://doi.org/10.1109/JPHOT.2016.2535309
  3. Effect of an Incoherent Glass Substrate on the Absorption Efficiency of Organic Solar Cells at Oblique Incidence Analyzed by the Transfer Matrix Method with a Glass Factor vol.52, pp.5R, 2013, https://doi.org/10.7567/JJAP.52.052301
  4. Effect of incidence angle and polarization on the optimized layer structure of organic solar cells vol.118, 2013, https://doi.org/10.1016/j.solmat.2013.07.040
  5. Effect of Sunlight Polarization on the Absorption Efficiency of V-shaped Organic Solar Cells vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.009
  6. Optimization of multilayer structures for V-shaped organic solar cells vol.53, pp.12, 2014, https://doi.org/10.7567/JJAP.53.122304
  7. Parametrization of the Optical Constants of AlAsxSb1-x Alloys in the Range 0.74-6.0 eV vol.18, pp.4, 2014, https://doi.org/10.3807/JOSK.2014.18.4.359
  8. Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.180
  9. Integrated optoelectronic model for organic solar cells based on the finite element method including the effect of oblique sunlight incidence and a non-ohmic electrode contact vol.55, pp.10, 2016, https://doi.org/10.7567/JJAP.55.102301
  10. Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.269
  11. Angle dependence of transparent photovoltaics in conventional and optically inverted configurations vol.103, pp.13, 2013, https://doi.org/10.1063/1.4823462
  12. Proposal of highly efficient photoemitter with strong photon-harvesting capability and exciton superradiance vol.111, pp.6, 2017, https://doi.org/10.1063/1.4998444
  13. Theoretical comparison of the excitation efficiency of waveguide and surface plasmon modes between quantum-mechanical and electromagnetic optical models of organic light-emitting diodes vol.26, pp.22, 2018, https://doi.org/10.1364/OE.26.00A955
  14. Enhancing Reproducibility and Nonlocal Effects in Film-Coupled Nanoantennas pp.21951071, 2018, https://doi.org/10.1002/adom.201801177
  15. Organic Photovoltaics over Three Decades vol.30, pp.35, 2018, https://doi.org/10.1002/adma.201800388
  16. Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes vol.73, pp.11, 2018, https://doi.org/10.3938/jkps.73.1663