DOI QR코드

DOI QR Code

Comparative Study of Digestive Enzyme in the Artemia Feeding Step of the Sweet Fish Plecoglossus altivelis, Rock Fish Sebastes schlegeli, Black Seabream Acanthopagrus schlegeli, and Olive Flounder Paralichthys olivaeus

Artemia 공급 단계에서 은어(Plecoglossus altivelis), 조피볼락(Sebastes schlegeli ), 감성돔(Acanthopagrus schlegeli ) 및 넙치(Paralichthys olivaeus)의 소화효소 활성

  • Lee, Bae-Ik (National Fisheries Research and Development Institute) ;
  • Kim, Yi-Cheong (National Fisheries Research and Development Institute) ;
  • Kim, Geun-Up (Gangwon Province Fisheries Research Institute) ;
  • Kwon, O-Nam (Marine Biology Center for Research and Education, Gangneung-Wonju National University)
  • 이배익 (국립수산과학원 전략양식연구소) ;
  • 김이청 (국립수산과학원 전략양식연구소) ;
  • 김근업 (강원도수산자원연구소) ;
  • 권오남 (강릉원주대학교 해양생물연구교육센터)
  • Received : 2011.08.10
  • Accepted : 2012.02.02
  • Published : 2012.02.29

Abstract

We compared the nutritional requirements of whole larvae of the black seabream Acanthopagrus schlegeli, sweet fish Plecoglossus altivelis, olive flounder Paralichthys olivaeus and rock fish Sebastes schlegeli. The larvae were 20, 30, 14 and 5 DAH (or spawning) of black seabream, sweet fish, olive flounder and rock fish, respectively. Specific ${\alpha}$-amylase activity (mU/mg protein) was highest (8,324.9 mU/mg protein) in rock fish larvae (P<0.05). Specific trypsin-like protease activity was highest (11,330.1 mU/mg protein) in black seabream larvae (P<0.05), which also exhibited the highest activity, 685.5 mU/mg dry weight (P<0.05). The specific activities per mg protein and mg dry weight of black seabream were the highest (187.4 mU/mg protein and 11.3 mU/mg dry weight, respectively) (P<0.05). A/P, P/L and A/L ratios of rock fish were 1.47, 90.3 and 133.1, respectively (P<0.05). We present here basic larval digestive enzymatic nutritional requirement data.

Keywords

References

  1. Alliot E, Faber A, Metailler R and Pastowreaud A. 1974. Nutritional requirements of sea bass (Dicentrachus labrax) and study of the protein and lipid rate in the diet. Aquaculture 10, 22-24.
  2. Bai SC and Cha YT. 1997. Comparison of growth and body composition in olive flounder laevae (Paralichthys olivaceus) fed domestic experimental and imported commercial microparticulated diets. J Aquaculture 10, 87-95. https://doi.org/10.1016/0044-8486(77)90035-7
  3. Bai SC, Jang HK and Kim KH. 1997. Evaluation of leather meal and meat and bone meal as the fish meal replacer in Israeli cap diets. J Aquaculture 10, 153-161.
  4. Blier PU, Lemiueux H and Devlin RH. 2002. Is the growth rate of fish set by digestive enzymes or metabolic capacity of the tissues? Insight from transgenic coho salmon. Aquaculture 209, 379-384. https://doi.org/10.1016/S0044-8486(01)00807-9
  5. Fish GR. 1960. The comparative activity of some digestive enzymes in the alimentary canal of tilapia and perch. Hydrobiologia 15, 161-178. https://doi.org/10.1007/BF00048084
  6. Furne M, Hidalgo MC, Lopez A, Garcia-Gallego M, Morales AE, Domezain A, Domezaine J and Sanz A. 2005. Digestive enzyme acitivities in adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250, 391-398. https://doi.org/10.1016/j.aquaculture.2005.05.017
  7. Glass HJ, Macdonald NL and Stark JR. 1987. Metabolism in marine flatfish: IV. Carbohydrate and protein digestion in Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol B Biochem Mol Biol 86, 281-289. https://doi.org/10.1016/0305-0491(87)90292-6
  8. Hidalgo MC, Sanz A, Garcia-Gallego M, Suarez MD and de la Higuera M. 1993. Feeding of the European eel Anguilla anguilla: I. Influence of dietary carbohydrate level. Comp Biochem Physiol A Physiol 105, 165-169. https://doi.org/10.1016/0300-9629(93)90190-F
  9. Hidalgo MC, Urea E and Sanz A. 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170, 267- 283. https://doi.org/10.1016/S0044-8486(98)00413-X
  10. Hsu TL and Wu JL. 1979. The relationship between feeding habits and digestive protease of some freshwater fishes. Bull Inst Zool Acad Sin 18, 45-53.
  11. Jeong KS. 1992. Availability of soybean meal and suitable protein, energy level in different types of diet of red seabream (Pagurus major). J Aquaculture 5, 9-17. https://doi.org/10.1016/0044-8486(75)90013-7
  12. Kitamikado M and Tachino S. 1996. Studies on the digestive enzymes of rainbow-trout: II. Proteases. Bull Jpn Soc Sci Fish 26, 685-690.
  13. Kolkovski S. 2001. Digestive enzymes in fish larvae-Application and implication-a review. Aquaculture 200, 181-201. https://doi.org/10.1016/S0044-8486(01)00700-1
  14. Kolkovski S. 2008. Advances in marine fish larvae diets. In: Advances en Nutricion Acuicola IX. IX Simposio Internacional de Nutricion Acuicola. Cruz Suarez LE, Marie DR, Salazar MT, Nieto Lopez MG, Cavazos DAV, Lazo JP and Viana T, eds Universidad Autonoma de Nuevo Leon, Monterrey, 20-45.
  15. Kunitz M. 1947. Crystalline soybean trypsin inhibitor: II General properties. J Gen Physiol 30, 291-310. https://doi.org/10.1085/jgp.30.4.291
  16. Kurtovic I, Marshall SN, Zhao X and Simpson BK. 2009. Lipases from mammals and fishes. Rev Fish Sci 17, 18-40. https://doi.org/10.1080/10641260802031322
  17. Kuz'mina VV and Kuz'mina YG. 1990. Level of total proteolytic activity in some species of fish from the Volga brain. J Ichthyol 30, 25-35.
  18. Kvale A, Yufera M, Nygard E, Aursland K, Harboe T and Hamre K. 2006. Leaching properties of three different microparticulated diets and preference of the diets in cod (Gadus morhua L.) larvae. Aquaculture 251, 402-415. https://doi.org/10.1016/j.aquaculture.2005.06.002
  19. Lee SM and Kim KD. 1999. Optimum dietary protein level of ayu (Plecoglossus altivelis). J Aquaculture 12, 145-153.
  20. Lowry OH, Rosebrough NN, Farr AL and Randall RJ. 1951. Protein measurement with the Folin-phenol reagent. J Biol Chem 193, 265-275.
  21. Moyano FJ, Díaz M, Alarcón FJ and Sarasquete MC. 1996. Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15, 121-130. https://doi.org/10.1007/BF01875591
  22. Nakagawa H, Umino T, Sekimoto T, Ambas I, Montgomer WL and Nakano T. 2002. Characterization of the digestive tract of wild ayu. Fish Sci 68, 341-346. https://doi.org/10.1046/j.1444-2906.2002.00431.x
  23. Ribeiro L, Zambonino-Infante JL, Cahu C and Dinis MT. 1999. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179, 465- 473. https://doi.org/10.1016/S0044-8486(99)00180-5
  24. Robyt JF and Whelan WJ. 1968. The $\beta$-amylases. In: Starch and its derivates. Radley JA ed. Academic Press, London, 477-497.
  25. Schmidt FH, Stork H and von Dahl K. 1974. Lipase, photometric assay. In: Methods of enzymatic analysis vol 2. Bergmeyer HU ed, Academic Press, New York, 819-823.
  26. SPSS Inc. 2000. SPSS Base 10.0.7 for Window; SPSS Inc., 444N. Michico Avenue, Chicago, IL, 60611.
  27. Suarez MD, Sanz A, Bazoco J and García-Gallego M. 2002. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Anguilla anguilla) and trout (Oncorhynchus mykiss). Aquacult Int 10, 143-156. https://doi.org/10.1023/A:1021371104839
  28. Walter HE. 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Methods of Enzymatic Analysis, Vol. V. Bergmeyer, HU ed, Verlag Chemie, Weinheim, 270-277.
  29. Zambonino Infante JL, Cahu CL, Péres A, Quazuguel P and Le Gall MM. 1996. Sea bass (Dicentrarchus labrax) larvae fed different Artemia rations: growth, pancreas enzymatic response and development of digestive functions. Aquaculture 139, 129-138. https://doi.org/10.1016/0044-8486(95)01149-8