Origin for Fluxional Structure of Tetracoordinate Pd ${ }^{\text {II }}$ Complexes ${ }^{\dagger}$

Ock Keum Kwak, Jeong-Seon Choi, Kyungok Park, ${ }^{\ddagger}$ and Jong Keun Park ${ }^{*}$
Department of Chemistry Education, Research Institute of Natural Science and Educational Research Institute Teachers College, Gyeongsang National University, Jinju 660-701, Korea. ${ }^{*}$ E-mail: mc7@gnu.ac.kr
${ }^{\dagger}$ Samsung Advanced Technology Training Institute, HRD Center, Samsung Electronics, Korea Received September 20, 2011, Accepted January 19, 2012

Key Words : Orbital interaction, Geometric configuration, Relative energy, d_{2}-orbital, Tridentate macrocycles

In the Pd-catalyzed cross-coupling reactions, the $\operatorname{Pd} \mathbf{L}_{2}$ complexes with the bulky and electron-rich \mathbf{L} ligands (phosphines, NHCs, etc) are important compounds as a $\operatorname{Pd}^{(0)}(\mathbf{L})_{n}$ precusor. ${ }^{1-8}$ The catalytic activity of $\operatorname{Pd}^{(0)}(\mathbf{L})_{n}$-precusors was influenced by the electronic property of the strong σ-donor and the steric effect of the bulky \mathbf{L} ligands. ${ }^{4-8}$ Due to the electron-transfer from the strong σ-donor \mathbf{L} ligand to Pd , the oxidation state of Pd in the neutral $\left[\mathrm{Pd}^{(0)} \mathbf{L}_{\mathrm{n}} \mathrm{X}\right]$ catalysts is zerovalent. ${ }^{1-3}$ In some X-ray crystallography results, ${ }^{9,10}$ the $\operatorname{Pd}\left([9] a_{n} \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ complexes with mixed hard/soft tridentate ligand have been observed as a five-coordinate geometry with an apical (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction. In $\operatorname{Pd}^{(0)}\left(\eta^{2}, \eta^{2}, \eta^{2}-\right.$ $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Me}_{2}$) complexes with an aza-macrocyclic ligand, ${ }^{7,8}$ the six coordination bonds of the three olefin units with Pd were symmetrically formed via three (olefin $\cdots \mathrm{Pd}^{\mathrm{II}}$) interactions. Meanwhile, in hydration reactions on square planar $\left[\mathrm{PdCl}_{4}\right]^{2-}$ complexes, two vertical $\left(\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{Pd}^{\mathrm{II}}\right)$ and $\left(\mathrm{HOH}^{\cdots}\right.$ $\mathrm{Pd}^{\mathrm{II}}$) interactions for the ligand exchange processes were investigated theoretically ${ }^{11-13}$ and experimentally. ${ }^{14}$ With increasing the strength of the fifth (solvent $\cdots \mathrm{Pd}^{\mathrm{II}}$) interaction, the replacement of the equatorial ($\mathrm{Pd}-\mathrm{Cl}$) bond with (solvent $\cdots \mathrm{Pd}^{\text {II }}$) takes place via a five-coordinate transition states.
Is there any relationship between the relative stability and fluxional configuration of the Pd isomers (exo- and endo-
types) and the apical (soft $\mathbf{P} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction in the Pd complexes? The unusual stereochemistry of square planar $\mathrm{Pd}^{\mathrm{II}}$ complexes might be influenced by the fifth special (soft $\mathbf{P} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction, ${ }^{1-10}$ and the conformational rearrangement for the relative stability. ${ }^{11-14}$ The vacant bond on the $\mathrm{z}-$ axis allows the occupied $\mathrm{d}_{z^{2}}$-orbital of $\mathrm{Pd}^{\mathrm{II}}$ to interact with the Lewis acid ligand (σ-acceptor), but it is difficult for electron-rich substrates and $\mathrm{Pd}^{\mathrm{II}}$ to interact apically (σ-donor \cdots filled $d_{z^{2}}$-orbital). Therefore, for $\operatorname{Pd}\left([9]\right.$ ane $\left.\mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$, the apical (σ-donor \cdots filled $4 \mathrm{~d}_{2^{2}}$-orbital) repulsion shown in Scheme 1 is suggested. In the present work, we have investigated the relative stabilities and extraordinary structures of the macrocyclic $\operatorname{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ complexes within the frameworks of the orbital interactions. The equilibrium geometric structures of tetracoordinate palladium $[\mathrm{Pd}([9]$ ane$\left.\mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}, \operatorname{Pd}([9]$ ane $\left.\mathbf{B A B}) \mathbf{L}_{2}\left(\mathbf{A}: \mathbf{P} ; \mathbf{B}=\mathbf{N} ; \mathbf{L}=\mathrm{Cl}^{-}, \mathrm{PH}_{3}\right)\right]$ complexes were fully optimized with the B3P86/6-311+G** (LanL2DZ for Pd) level using Gaussian 03. ${ }^{15}$

Optimized geometric structures of tetracoordinate $\mathrm{Pd}([9]-$ ane $\left.\mathbf{N}_{2} \mathbf{P}\right) \mathbf{L}_{2}\left\{\operatorname{Pd}\left([9]\right.\right.$ ane $\left.\left.\mathbf{N}_{2} \mathbf{P}\right) \mathbf{L}_{2}\right\}$ isomers including HOMO were represented in Figure 1 and their parameters were listed in Table 1. In the Pd complexes, $\mathrm{Pd}^{\mathrm{II}}$ locates at the center of the tetracoordinate Pd complexes with a ($[9]$ ane $\mathbf{N}_{2} \mathbf{P}$) ligand and two \mathbf{L} monodentates. In endo- $\mathrm{Pd}\left([9] \mathrm{ane}_{2} \mathbf{N}_{2} \mathbf{P}\right) \mathrm{Cl}_{2}$

Scheme 1. The apical (soft $\left.\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}\right)$ repulsion between the soft \mathbf{A} and the $\mathrm{d}_{2}{ }^{2}$-orbital in endo- $\mathrm{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}\left(\mathbf{B}=\mathrm{N}: \mathbf{A}=\mathrm{P} ; \mathbf{L}=\mathrm{Cl}^{-}, \mathrm{PH}_{3}\right)$.

[^0]

Figure 1. Geometric structures of tetracoordinate $\left[\operatorname{Pd}\left([9] a n e \mathbf{N}_{2} \mathbf{P}\right) \mathbf{L}_{2}, \operatorname{Pd}([9]\right.$ ane $\left.\mathbf{N P N}) \mathbf{L}_{2}\left(\mathbf{L}=\mathrm{Cl}^{-}, \mathrm{PH}_{3}\right)\right]$ complexes including HOMO optimized at the B3P86//6-311+G**/(lan12DZ for Pd) levels.
$\left\{\right.$ endo $-\mathrm{Pd}([9]$ ane $\left.\mathbf{N P N}) \mathrm{Cl}_{2}\right\}$, the electron densities of HOMO ($2 \mathrm{a}_{1 \mathrm{~g}}$) are represented on the $4 \mathrm{~d}_{22}$-orbital, the Cl ligand, and the third binding A site. By the electronegativity of Cl , the electron density of the tridentate transfers toward the transCl ligand through the $\mathrm{Pd}^{\mathrm{II}}$ center. The large lobe of the soft \mathbf{A} site repulsively interacts with the increased lobe of $4 \mathrm{~d}_{z^{2}}$ orbital. Therefore, the repulsion between two orbitals took place, and the $\mathrm{Pd}^{\mathrm{II}}$ center lies slightly below the mean plane $\left(\mathbf{B}_{2} \mathrm{PdCl}_{2}\right)$. As shown in Table 1, the distance between the $\mathrm{Pd}^{\mathrm{II}}$ center and the third \mathbf{A} site increases slightly. The relative energy of endo $-\operatorname{Pd}([9]$ aneNPN $) \mathrm{Cl}_{2}$ is lower than that of endo- $\mathrm{Pd}\left([9] \operatorname{ane}^{2} \mathbf{N}_{2} \mathbf{P}\right) \mathrm{Cl}_{2}$, and the Pd complexes of the exo-
type are more stable than that of the endo-type.
In $\left[\mathrm{Pd}\left([9] \text { ane } \mathbf{B}_{2} \mathbf{A}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, the electron density of HOMO of the A site and the $4 \mathrm{~d}_{z^{2}}$-orbital are enlarged by the electronegativity of the \mathbf{A} site and the donocity of PH_{3}. Because of the electronic repulsion between the increased σ-orbital and the filled $\mathrm{d}_{2}{ }^{2}$-orbital, the lobe size of the $\mathrm{d}_{\mathrm{z}^{2}}$-orbital is not symmetric. Therefore, the potential energy of the \mathbf{A} site increases, and the large σ-lobe of the \mathbf{A} site is energetically close to the highly unoccupied $3 \mathrm{a}_{1 \mathrm{~g}}$-orbital of $\mathrm{Pd} \mathbf{L}_{2}$. As a result, the strong apical (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction between the axially soft A site and the Pd center occurred potentially. The $\mathrm{Pd}^{\mathrm{II}}$ center lies slightly above the mean plane. The

Table 1. Optimized average bond distances (\AA) and relative energies $(e V)$ of the equilibrium structures $\operatorname{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ and $\operatorname{Pd}([9] a n e \mathbf{B A B}) \mathbf{L}_{2}$ at the B3P86 level

Compound	Average distance				Relative energy	
	$\mathrm{R}^{a_{\text {Pd-N }}}$	$\mathrm{R}^{a_{\text {Pd-P }}}$	$\mathrm{R}^{\text {b }{ }_{\text {Pd } \cdots \mathrm{N}}}$	$\mathrm{R}^{\text {b }{ }_{\text {d } \cdots \mathrm{P}} \text { }}$	$\Delta \mathrm{E}^{c}{ }_{\text {NPN-N2P }}$	$\Delta \mathrm{E}^{d}$ exo-endo
endo- $\mathrm{Pd}([9] \mathrm{aneNPN}) \mathrm{Cl}_{2}$	2.113	2.225	3.040		-0.28	0.00
endo- $\mathrm{Pd}\left([9] \mathrm{aneN}_{2} \mathrm{P}\right) \mathrm{Cl}_{2}$	2.088			3.033	0.00	0.00
	2.041^{e}	2.334^{e}	$2.298{ }^{\text {e }}$			
exo- $\mathrm{Pd}([9]$ aneNPN $) \mathrm{Cl}_{2}$	2.106	2.346	3.471		-0.35	-0.13
	2.124^{f}	2.342^{e}		$3.087{ }^{f}$		
exo- $\mathrm{Pd}\left([9] \mathrm{aneN}_{2} \mathrm{P}\right) \mathrm{Cl}_{2}$	2.095			3.868	0.00	-0.06
endo- $\left[\mathrm{Pd}([9] \mathrm{aneNPN})\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$	2.195	2.289	2.848		0.13	0.00
endo- $\left[\mathrm{Pd}\left([9] \mathrm{aneN}_{2} \mathrm{P}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$	2.142	$2.340^{\text {g }}$		2.782	0.00	0.00
exo- $\left[\mathrm{Pd}([9] \text { aneNPN })\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$	2.154	2.363	3.504		-0.40	0.00
exo- $\left[\mathrm{Pd}\left([9] \mathrm{aneN}_{2} \mathrm{P}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$	2.129			3.963	0.00	0.05

$\overline{{ }^{a} \text { Bond lengths between } \mathrm{Pd} \text { and the equatorial site. }{ }^{b} \text { Bond lengths between } \mathrm{Pd} \text { and the axial site. }{ }^{c} \text { Relative energy gap between } \operatorname{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2} \text { and }}$ $\operatorname{Pd}([9] a n e \mathbf{B A B}) \mathbf{L}_{2} .{ }^{d}$ Energy gap between endo- and exo-types. ${ }^{e}$ Ref. 10. ${ }^{\boldsymbol{f}}$ Ref. 9. ${ }^{g}$ Ref. 6.
distance between the $\mathrm{Pd}^{\text {II }}$ center and the third \mathbf{A} site decreases. In particular, in $\left[\mathrm{Pd}\left([9] \text { ane } \mathbf{N}_{2} \mathbf{P}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, pentacoordinate Pd complexes were formed by an axial ($\mathrm{Pd}-\mathbf{A}$) bond of $\mathrm{R}_{(\mathrm{A} \cdots \mathrm{Pd})}=2.782 \AA$. The vertical (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction shows in an irregular fashion such as a pentacoordinate Pd complex. And the relative energy of endo- $[\mathrm{Pd}([9]-$ ane $\left.\left.\mathbf{N}_{2} \mathbf{P}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ is lower than that of endo- $[\mathrm{Pd}([9]$ aneNPN $)-$ $\left.\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, and the potential energy of the exo-type is similar to that of the endo-type. Meanwhile, in exo- $\mathrm{Pd}\left([9] \operatorname{anne}_{2} \mathbf{P}\right) \mathrm{Cl}_{2}$ and $\mathrm{Pd}([9]$ ane $\mathbf{N P N}) \mathrm{Cl}_{2}$, no lobes of the HOMO were found at the axial \mathbf{A} (or B) site, while in exo- $\left[\mathrm{Pd}\left([9] a n e \mathbf{N}_{2} \mathbf{P}\right)-\right.$ $\left.\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ and exo- $\left[\mathrm{Pd}([9] \text { aneNPN })\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, no lobes of the HOMO were found at the Pd center. Therefore, the repulsive interaction between two orbitals does not take place, and mean planes of the Pd complexes are flat.
By the experimental results, ${ }^{3-10}$ unexpected pentacoordinate structures of $\operatorname{Pd}\left([9]\right.$ ane $\left.\mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ complexes with the fifth apical (A-Pd) bond have been synthesized. The ($\mathrm{soft} \mathbf{A} \cdots$ $\mathrm{Pd}^{\mathrm{II}}$) interaction has been conditionally dependent on the geometric constraints (multidentate coordinations, polymeric side interactions) and the special counter-ions for $[\mathrm{Pd}([9]-$ ane $\left.\left.\mathbf{N}_{2} \mathrm{~S}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and $\left[\mathrm{Pd}\left([9] \text { ane } \mathbf{N}_{2} \mathrm{~S}\right)_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. According to the relative stability of geometric configuration, the selective coordination bonds of \mathbf{A} and \mathbf{B} on ([9]ane $\mathbf{A}_{2} \mathbf{B}$) can occur at the apical or basal position. The unusual stereochemistry of tetracoordinate Pd complexes has been described with the electronic property of the soft σ-donor ${ }^{3-8}$ and steric effect ${ }^{3-10}$ of the multidentate ($[9] \mathrm{ane}_{2} \mathbf{A}_{2} \mathbf{B}$) ligand. In the ligand exchange processes of Pd complexes, ${ }^{11-14}$ the mechanisms for the reactions were described by two models such as $\left(\mathrm{H}_{2} \mathrm{O} \cdots\right.$ $\mathrm{d}_{2^{2}}$-orbital) and ($\mathrm{OH}_{2} \cdots \mathrm{~d}_{2} 2$-orbital). However, the former $\left(\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{d}_{2}\right.$-orbital) interaction is rarely formed because of electrostatic repulsions. Meanwhile, the $\left[\operatorname{Pd}\left([9] \mathrm{aneN}_{3}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Pd}\left([9] \mathrm{ane} \mathbf{N}_{3}\right)_{2}\left(\mathrm{H}[9] \text { ane } \mathbf{N}_{3}\right)_{2}\right]^{3+}$ complexes with tridentate ligands does not have an apical (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction and the third apical N -site directed to the outer of coordination plane in range of 2.982-3.499 \AA.
Why does the change of the geometric configuration from the vertical ligand to equatorial direction occur? The equatorial (soft $\mathbf{P} \cdots \mathrm{Pd}^{\mathrm{II}}$) bond is stronger than that of the axial (hard $\mathbf{N} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction. The soft \mathbf{P} sites of [9]ane $\mathbf{N}_{2} \mathbf{P}$ coordinates preferentially to the Pd center at the equatorial direction than the hard atoms (N). As shown in Table 1, the relative energy level between endo- $\left[\mathrm{Pd}\left([9] \mathrm{ane}^{2} \mathbf{N}_{2} \mathbf{P}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ and endo- $\left[\mathrm{Pd}([9] \text { aneNPN })\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ is low. $\mathrm{Pd}\left([9] \mathrm{ane}_{2} \mathbf{B}\right) \mathrm{Cl}_{2}$ without the axial (soft $\mathbf{A}-\mathrm{Pd}$) bond is more unstable than $\operatorname{Pd}([9]$ ane $\mathbf{B A B}) \mathrm{Cl}_{2}$, which had an equatorially soft \mathbf{A} site.
The structural variations and the relative energies of the unstable $\operatorname{Pd}\left([9] \operatorname{ann}^{\mathbf{B}} \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}\left\{\right.$ or $\operatorname{Pd}([9]$ ane $\left.\mathbf{A B A}) \mathbf{L}_{2}\right\}$ complex compared with the stable $\operatorname{Pd}([9]$ ane $\mathbf{B A B}) \mathbf{L}_{2}$ \{or $\operatorname{Pd}([9]$ ane$\left.\left.\mathbf{A}_{2} \mathbf{B}\right) \mathbf{L}_{2}\right\}$ complex are represented in Figure 2. In $[\mathrm{Pd}([9]$ ane$\left.\left.\mathbf{B}_{2} \mathbf{A}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, the $3 \mathrm{a}_{1 \mathrm{~g}}$-orbital plays an important role as a bridge for pentacoordinate Pd_{5} intermediates. Via the bridged $3 \mathrm{a}_{1 \mathrm{~g}}$-orbital, a pentacoordinate $\left[\mathrm{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right)\right.$ $\left.\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ structure with an axially strong (soft A-Pd) bond was formed as a local minimum for the path: $(\mathbf{d}) \rightarrow(\mathbf{b})$. To create a more energetically stable structure, the axial (soft A

Figure 2. The variation of the structural configuration from the unstable endo $-\operatorname{Pd}\left([9] \operatorname{ann}^{\mathbf{B}} \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ complex to the stable endo$\operatorname{Pd}([9]$ ane $\mathbf{B A B}) \mathbf{L}_{2}$ including the relative energy level ($\mathbf{A}: \mathrm{P} ; \mathrm{B}: \mathrm{N}$; $\left.\mathbf{L}: \mathrm{Cl}^{-}, \mathrm{PH}_{3}\right) .(\mathbf{a}),(\mathbf{b}),(\mathbf{c})$, and (d) are a relative energy level of
 estimated TS point between two structures, and endo- $\mathrm{Pd}([9]$ aneBAB) \mathbf{L}_{2}, respectively.
$\cdots \mathrm{Pd}^{\mathrm{II}}$) interaction was converted to an equatorial (soft $\mathbf{A} \cdots$ $\mathrm{Pd}^{\mathrm{II}}$) interaction via the transition trigonal bypyramidal or square pyramidal structure $\{$ path: $(\mathbf{d}) \rightarrow(\mathbf{c}) \rightarrow(\mathbf{a})$ for $\mathrm{Pd}([9]-$ ane $\left.\mathbf{B}_{2} \mathbf{A}\right) \mathrm{Cl}_{2}$ and $\left.\left[\mathrm{Pd}([9] \text { ane } \mathbf{A B A})\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}\right\}$. The interconversion of the two geometries occurred in a simple way via the lower potential energy barrier. As a result, the unusual stereochemistry of square planar Pd complexes may be influenced greatly by the relatively stable geometric rearrangement using strongly apical (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction.

In conculsion, we investigated the uncommon structures and relative stabilities of the $\operatorname{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$ complexes. The coordination bond of the soft \mathbf{A} site to the $4 \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$ orbital in the equatorial direction was more preferential than that of the hard \mathbf{B} site. In $\left[\mathrm{Pd}\left([9] \mathrm{ane}_{2} \mathbf{B} \mathbf{A}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$, the repulsion between the large σ-lobe of the axial \mathbf{A} site and the filled $4 \mathrm{~d}_{z^{2}}$-orbital was strong, and simultaneously, the potential energy of the \mathbf{A} site increased. The increased $\mathrm{a}_{1 \mathrm{~g}}$-orbital (enrich electron density) of the axial \mathbf{A} site could be shared with the unoccupied $3 \mathrm{a}_{1 \mathrm{~g}}$-orbital of Pd_{2}. Therefore, the pentacoordinate $\left[\mathrm{Pd}\left([9] \text { ane } \mathbf{B}_{2} \mathbf{A}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]^{2+}$ intermediate species can be easily formed through an axial (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) interaction that had a low energy barrier. Meanwhile, because the relative potential energy of $\operatorname{Pd}([9] a n e \mathbf{B A B}) \mathbf{L}_{2}$ was lower than that of $\operatorname{Pd}\left([9] a n e \mathbf{B}_{2} \mathbf{A}\right) \mathbf{L}_{2}$, the axial (soft $\mathbf{A} \cdots$ $\mathrm{Pd}^{\mathrm{II}}$) interaction turned in the equatorial (soft $\mathbf{A} \cdots \mathrm{Pd}^{\mathrm{II}}$) direction via the pentacoordinate transition state. In Pdmediated cross-coupling reactions, the unoccupied $3 \mathrm{a}_{1 \mathrm{~g}}$ (or occupied $2 \mathrm{a}_{1 \mathrm{~g}}$)-orbital of the $\mathrm{Pd} \mathbf{L}_{2}$ complexes forms a bridge orbital that interacts with the σ-donor (or σ-acceptor) of the substrates.

Acknowledgments. This work was supported by the fund of Research Promotion Program (RPP-2010-018), Gyeongsang National University.

References

1. De Meijere, A.; Diederich, F. Metal Catalyzed Cross Coupling

Reactions, $2^{\text {nd }}$ ed.; John Wiley and Sons: New York, 2004; Vols. 1 and 2.
2. Arooj, M.; Park, K.; Park, J. K. Bull. Korean Chem. Soc. 2010, 31, 3815.
3. Crociani, B.; Antonaroli, S.; Burattini, M.; Benetollo, F.; Scrivanti, A.; Bertoldini, M. J. Organomet. Chem. 2008, 693, 3932.
4. Scrivanti, A.; Bertoldini, M.; Beghetto, V.; Matteoli, U.; Venzo, A. J. Organomet. Chem. 2009, 694, 131.
5. Sivaramakrishna, A.; Clayton, H. S.; Mogorosi, M. M.; Moss, J. R. Coor. Chem. Rev. 2010, 254, 2904.
6. Ariafard, A.; Lin, Z.; Fairlamb, Ian J. S. Organometallics 2006, 25, 5788.
7. Blum, K.; Chernyshova, E. S.; Goddard, R.; Jonas, K.; Pörschke, K.-R. Organometallics 2007, 26, 5174.
8. Pla-Quintana, A.; Torrent, A.; Dachs, A.; Roglans, A.; Pleixats, R.; Moreno-Manas, M.; Parella, T.; Benet-Buchholz, J. Organometallics 2006, 25, 5612.
9. Arca, M.; Blake, A. J.; Lippolis, V.; Montesu, D. R.; McMaster, J.; Tei, L.; Schröder, M. Eur. J. Inorg. Chem. 2003, 1232.
10. Broering, M.; Brandt, C. D. Chem. Commun. 2003, 2156.
11. Ayala, R.; Marcos, E. S.; Daz-Moreno, S.; Solë, V. A.; MuòozPãez, A. J. Phys. Chem. B 2001, 105, 7588.
12. Burda, J. V.; Zeizinger, M.; Leszczynski, J. J. Chem. Phys. 2004, 120, 1253.
13. Arooj, M.; Park, J. K. Bull. Korean Chem. Soc. 2008, 29, 2295.
14. Caminiti, R.; Carbone, M.; Sadun, C. J. Mol. Liquid 1998, 75, 149.
15. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P. \& Pople, J. A. Gaussian 03; Gaussian Inc.: Pittsburgh, PA, 2003.

[^0]: ${ }^{\dagger}$ This paper is to commemorate Professor Kook Joe Shin's honourable retirement.

