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The facilitated diffusion effect on protein-DNA binding is studied. A rigorous theoretical approach is presented

to deal with the coupling between one-dimensional and three-dimensional diffusive motions. For a simplified

model, the present approach can provide numerically exact results, which are confirmed by the lattice-based

Monte Carlo simulations. 
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Introduction

One of central questions in molecular biology is how a

DNA-binding protein searches for a specific binding site on

DNA. The protein can find its target much faster than simple

diffusion-reaction theories predict. Numerous experimental

and theoretical studies1-19 make us believe that diffusive

sliding along DNA greatly facilitates the binding process

between DNA and protein. 

From the viewpoint of diffusion-influenced reaction

theories, the facilitated diffusion problem has two coupled

mechanisms of the three-dimensional (3D) nonspecific bind-

ing to a random site on DNA and the one-dimensional (1D)

sliding along DNA to the specific binding site, as illustrated

in Figure 1. Even if each mechanism can be solved analy-

tically, the coupling between the two prohibits us from

obtaining the exact analytical results. Most previous theore-

tical approaches treated the diffusion-reaction process on the

basis of the phenomenological rate law. In this paper, a

rigorous theoretical approach is presented to provide numeri-

cally exact solutions for a simplified model of the facilitated

diffusion-reaction problem. The lattice-based Monte Carlo

simulations are also performed to confirm our theoretical

predictions.

Theory

As an archetype of the facilitated diffusion-influenced

reaction between a protein and a specific binding site on

DNA, we assume the DNA-binding protein as a sphere and

the DNA strand as an infinite cylinder. When the protein

encounters the DNA within the distance Rr by diffusion in

the bulk cytoplasm, the protein is assumed to be trapped on

the DNA strand. Without loss of generality, we can regard

the protein as a point particle and the DNA as a cylinder

with radius Rr along z-axis. The specific binding site is

modeled with a reactive cylinder in DNA located at origin.

The trapped protein searches for the binding site by 1D

sliding. The search ends when the protein encounters the

reactive cylinder within the distance Rz. The simplified

model is illustrated in Figure 1. The reaction can occur in

two ways. One is the direct encounter with the reactive

cylinder by diffusion in 3D and the other is the two-step

reaction by coupling of 1D and 3D diffusive motions. 

Let us denote the probability density to find a free protein

at time t as p(r,z,t) in cylindrical coordinates r and z.

Similarly, p(*r,z,t) is the probability density for a protein

trapped on the DNA strand and p(*r,*z,t) is the specific

binding reaction probability. Here, *r denotes the trapped

state and *z denotes the bound state. Then, the evolution of

reaction-diffusion equations are as follows:

, (1)
∂p r,z,t( )

∂t
-------------------- = Lfree p r,z,t( )
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Figure 1. Schematic representation of protein-DNA binding by the
facilitated diffusion. In the left figure, the searching process con-
sists of 3D and 1D diffusive motions. In the right figure, our
simplified model is presented. The protein is regarded as a point
particle, DNA is an infinite cylinder along z-axis, and the specific
binding site is a color cylinder at origin in the cylindrical coordinate.
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, (2)

where , , and H(z) is the Heaviside step

function. The diffusion operators without an interaction

potential are defined as 

, (3)

, (4)

with the corresponding mutual diffusion constants Dr
, Dz,

and Dtrap.

To make the problem tractable, here, we consider only the

perfect irreversible trapping and binding, which means that

every encounter leads to the trapping and binding and

reversible untrapping and unbinding are not allowed. Then,

for an initially free state, namely,

, (5)

we can solve Eq. (1) by using separation of variables and

obtain the Green function as a product solution20 of well-

known functions,

, (6)

where  is the 1D Green function of a free particle21

, (7)

and the two-dimensional (2D) function  can be

obtained in the Laplace-transformed [ ]

domain as21

(8)

Here,  and  and the

diffusion control rate constant and time scale are defined as

 and , respectively. Kn(x) and In(x) are the

modified Bessel functions of order n. Integrating Eq. (8)

gives the survival probability

. (9)

We can use well-known numerical inverse Laplace-trans-

form algorithms22 for Eqs. (8) and (9).

The solution for an initially trapped state at z0 is also well-

known as

, (10)

and integrating Eq. (10) over z leads to

, (11)

where erfc(x) is the complementary error function. 

Now, we suppose that a free diffusing particle is trapped

on the nonspecific position z' at time t' and slides until time t.

Then, the probability density function of the particle is

proportional to , where

the time-dependent trapping rate is defined as

. (12)

Since zz' > 0 for the irreversible trapping and specific bind-

ing reactions, we have

 × . (13)

When z0 = 0, this equation, by symmetry, reduces to

(14)

The total survival probability function without the specific

binding can be obtained as

(15)

where

, (16)

(17)

Note that these equations are formally exact. However, since

 and therefore  are known only in the Laplace-

transformed domain, we cannot obtain the closed-form

expression of . By integrating Eq. (17) numerically,

we can obtain the numerically exact results. For the numeri-

cal integration of Eq. (17), the following recent approxi-

mation for  in the time domain, which was reported

to be accurate for all times,23 may be useful:

. (18)

Normalization conditions are given by

, (19)

. (20)

Inserting Eq. (11) into Eq. (20), we have

. (21)

Results and Discussions

To confirm our theoretical predictions, we perform lattice-
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based Monte Carlo simulations for the present model

system.24 An initially implanted particle moves by random

walk in 3D lattice. When the particle reaches the cylindrical

trap, the trapping occurs if  or the binding reaction

with the reactive cylinder occurs if . Once trapped

particle diffuses along the cylinder until the binding reaction

occurs. The lattice constant should be small enough to

reproduce the known theoretical results. All simulations are

done for more than 108 time-steps (t ~ 103) and at least 105

independent trajectories are averaged.

Since survival probabilities depend on the initial position,

we select two distinct initial positions with the same

= 1.5: at  (r0 = 1.22 and z0 = 0.87) and on

the xy-plane (r0 = 1.5 and z0= 0). In both cases, diffusion

constants are the same (Dr = Dz = Dtrap = 1) and Rr = Rz = 1.

In Figure 2, simulation results for  are compared

with numerical solutions of Eqs. (15)-(17). One can see that

two results are nearly identical. We believe that the small

deviations at long times come from the numerical integ-

ration of Eq. (17). As expected, the survival probability

decreases more rapidly when the initial position is closer to

the cylindrical trap.

To study effects of the facilitated diffusion, we compare

the theoretical predictions of above two cases with other data

in Figure 3. First, simulation results without the cylindrical

trap are compared since no analytical result is known. The

difference shows the facilitated diffusion effects. The

biggest difference is the existence of an escape probability.

When the dimensionality is larger than 2, there is always an

escape probability, which is realized by the plateau region in

the figure. Adding an infinite cylindrical trap to the system,

the dimensionality effectively reduces to 2 and the protein

always reaches the DNA strand and eventually the specific

binding site at long times. Therefore, the ratio of the reaction

rate in the normal diffusion case to that in the facilitated

diffusion case goes up to infinity in the macroscopic time

limit. 

For comparison, we also plot  or ,

which can be evaluated from Eq. (9) or from simulation

results. We confirm that the simulation results reproduce Eq.

(9). At short times, the results of  seems similar to

those of . In the intermediate time region, the differ-

ence between  and , namely, 

becomes larger. In the long time limit,  apparently

converges to  again. Therefore,  strongly

depends on , in other words, the specific binding rate

strongly depends on the nonspecific binding rate. This can

be understood by the fact that the 1D searching rate of the

trapped protein is much faster than the 2D trapping rate. 

Conclusion

We have presented a rigorous theoretical approach for

the celebrated facilitated diffusion problem. The theoretical

method can provide numerically exact results for a simpli-

fied model by solving the coupling effect between one- and

three-dimensional diffusive motions. The theoretical results

are confirmed by the lattice-based Monte Carlo simulations.

z  > Rz

z Rz≤

r0
2

z0
2

+ x0 = y0 = z0

S t|r0,z0( )
Sr t|r0( ) Sfree t|r0,z0( )

S t|r0,z0( )
Sr t|r0( )

S t|r0,z0( ) Sr t|r0( ) Strap t|r0,z0( )
S t|r0,z0( )

Sr t|r0( ) S t|r0,z0( )
Sr t|r0( )

Figure 2. The time-dependent survival probability of a protein.
Simulation results (open circles) are compared with those (solid
lines) of Eq. (15) for two different initial conditions: at x0 = y0 = z0

(blue) and on the xy-plane (red). 

Figure 3. The time-dependent survival probability of a protein for
two initial conditions: (a) x0 = y0 = z0  (b) z0 = 0. The blue and red
solid lines are the same as those in Figure 2. The black solid lines
are obtained from the simulation without an infinite cylindrical
trap. The dashed lines are obtained numerically from Eq. (16).
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The rate enhancement by the facilitated diffusion results

from the dimensionality reduction. The three-dimensional

diffusive motion reduces to two-dimensional plus one-dimen-

sional motions. The escape probability in three dimensions

goes to zero in the reduced dimensions. Therefore, the ratio

of the reaction rate in the normal diffusion case to that in the

facilitated diffusion case goes up to infinity in the macro-

scopic time scale. Even when the one-dimensional diffusion

is much slower than three-dimensional diffusion,17 the

facilitated effect will appear in a different time region. 

In reality, the cell environment is much more complicated.

The cytoplasm is crowded and one-dimensional diffusion

along the DNA strand suffers from obstacles and different

short-range interactions. However, the key feature of the

dimensionality reduction should not vanish. Diffusion usual-

ly results from many kinds of collisions in the presence of

obstacles and if one-dimensional and three-dimensional

“diffusions” can be assumed to include complicated effects,

our theoretical predictions should be useful. 

More thorough studies may include effects of the finite

reactivity, the finite cylinder size, and so forth. Other kinds

of dimensionality reductions can be studied in a similar way.

Since more complicated two-dimensional diffusion-influenced

reactions were reported,25,26 these results can be applied to

the present problem dealing with different mechanisms.

These will be reported elsewhere. 
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