DOI QR코드

DOI QR Code

Accumulation and Decay of Macroscopic Correlations in Elementary Reactions Kinetics

  • Doktorov, Alexander B. (Institute of Chemical Kinetics and Combustion SB RAS, Physics department, Novosibirsk State University) ;
  • Kipriyanov, Alexander A. (Institute of Chemical Kinetics and Combustion SB RAS, Physics department, Novosibirsk State University) ;
  • Kipriyanov, Alexey A. (Institute of Chemical Kinetics and Combustion SB RAS, Physics department, Novosibirsk State University)
  • Received : 2011.11.30
  • Accepted : 2012.01.11
  • Published : 2012.03.20

Abstract

In the present contribution the Encounter Theory (ET) (the prototype of the classical Collision Theory in rarefied gases) concepts for widely occurring diffusion assisted irreversible bulk reactions A + A ${\rightarrow}$ C and A + B ${\rightarrow}$ C in liquid solutions examined by the authors in the literature are analyzed and compared with each other for these different types of reactions. It is shown that for a particular case of equal initial concentrations $[A]_0=[B]_0$ in the reaction A + B ${\rightarrow}$ C, when the kinetics of both reactions A + A ${\rightarrow}$ C and A + B ${\rightarrow}$ C in the framework of formal chemical kinetics and ET are the same, the accumulation of macroscopic correlations breaking the concepts of independent encounters and leading to the Generalized Encounter Theory (GET) are drastically different. The influence of the force interaction and the decay of nonstable reactants on the time behavior the macroscopic correlations is also briefly discussed.

Keywords

References

  1. Von Smoluchowski, M. Z. Phys. Chem. 1917, 92, 129.
  2. Collins, F. C.; Kimbal, G. E. J. Colloid Interface Sci. 1949, 4, 425. https://doi.org/10.1016/0095-8522(49)90023-9
  3. Tunitskii, N. N.; Bagdasar'yan, Kh. S. Opt. Spectrosk. 1963, 15, 100
  4. Tunitskii, N. N.; Bagdasar'yan, Kh. S. Opt. Spectrosc. (USSR) 1963, 15, 303.
  5. Kilin, S. F.; Mikhelashvili, M. S.; Rozman, I. M. Opt. Spektrosk. 1964, 16, 1063
  6. Kilin, S. F.; Mikhelashvili, M. S.; Rozman, I. M. Opt. Spektrosc. (USSR) 1964, 16, 576.
  7. Vasil'ev, I. I.; Kirsanov, B. P.; Krongaus, V. A. Kinetika i kataliz. 1964, 5, 792.
  8. Yokota, M.; Tanimoto, O. J. Phys. Soc. Jpn. 1967, 22, 779. https://doi.org/10.1143/JPSJ.22.779
  9. Steinberg, I. Z.; Katchalski, E. J. Chem. Phys. 1968, 48, 2404. https://doi.org/10.1063/1.1669460
  10. Tachiya, M. Radiat. Phys. Chem. 1983, 21, 167.
  11. Waite, T. R. Phys. Rev. 1957, 107, 463. https://doi.org/10.1103/PhysRev.107.463
  12. Waite, T. R. J. Chem. Phys. 1958, 28, 103. https://doi.org/10.1063/1.1744051
  13. Shekhtman, V. L. Opt. Spektrosk. 1972, 33, 284
  14. Shekhtman, V. L. Opt. Spectrosc.(USSR) 1972, 33, 152.
  15. Doktorov, A. B.; Burshtein, A. I. Zh. Eksp. Teor. Fiz. 1975, 68, 1349
  16. Doktorov, A. B.; Burshtein, A. I. Sov. Phys. JETP. 1975, 41, 671.
  17. Doktorov, A. B. Physica A 1978, 90, 109. https://doi.org/10.1016/0378-4371(78)90047-X
  18. Watanabe, T. Phys. Rev. 1965, 138, A1573. https://doi.org/10.1103/PhysRev.138.A1573
  19. Burshtein, A. I. Sov. Phys. Doklady. 1966, 11, 65
  20. Burshtein, A. I. Doklady Academy of Science (in Russian). 1966, 166, 577.
  21. Entelis, S. G.; Tiger, R. P. Reaction Kinetics in the Liquid Phase; Khimiya, Moscow, 1973; Wiley: New York, 1976.
  22. Kramers, H. Physica. 1940, 7, 284. https://doi.org/10.1016/S0031-8914(40)90098-2
  23. Marcus, R. A. Ann. Rev. Phys. Chem. 1964, 15, 155. https://doi.org/10.1146/annurev.pc.15.100164.001103
  24. Barzykin, A. V.; Frantsuzov, P. A.; Seki, K.; Tachiya, M. Advan. Chem. Phys. 2002, 123, 511. https://doi.org/10.1002/0471231509.ch9
  25. Tunitskii, N. N.; Kaminski, V. A.; Timashev, S. F. Methods of physicochemical kinetics (in Russian); Khimiya, Moscow, 1972.
  26. Frank, J.; Rabinowich, E. Trans. Faraday Soc. 1934, 30, 120. https://doi.org/10.1039/tf9343000120
  27. Noyes, R. M. J. Am. Chem. Soc. 1955, 77, 2042. https://doi.org/10.1021/ja01613a003
  28. Noyes, R. M. J. Am. Chem. Soc. 1956, 78, 5486. https://doi.org/10.1021/ja01602a007
  29. Ovchinnikov, A. A.; Timashev, S. F.; Belyy, A. A. Kinetics of Diffusion Controlled Chemical Processes; Commack, N.Y.: Nova Science Publishers: 1989.
  30. Doktorov, A. B.; Kipriyanov, A. A. J. Phys.: Condens. Matter 2007, 19, 065136. https://doi.org/10.1088/0953-8984/19/6/065136
  31. Weller, A. Z. Phys. Chem. (Munich) 1958, 17, 224. https://doi.org/10.1524/zpch.1958.17.3_4.224
  32. Trie., N. M.; Sundheim, B. R. J. Phys. Chem. 1965, 69, 2044. https://doi.org/10.1021/j100890a041
  33. Cohen, B.; Huppert, D.; Agmon, N. J. Phys. Chem. A 2001, 105, 7165. https://doi.org/10.1021/jp0106911
  34. Gladkikh, V. S.; Burshtein, A. I.; Tavernier, H. L.; Fayer, M. D. J. Phys. Chem. A 2002, 106, 6982 https://doi.org/10.1021/jp0207228
  35. Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; Wiley: New York, 1980.
  36. Tunitskii, N. N. Diffusion and Random Processes (in Russian); Novosibirsk, Nauka, 1971.
  37. Kuzovkov, V. N.; Kotomin, E. A. J. Phys. C 1980, 13, L499. https://doi.org/10.1088/0022-3719/13/21/001
  38. Kuzovkov, V. N.; Kotomin, E. A. Phys. Stat. Sol. (b) 1981, 108, 37. https://doi.org/10.1002/pssb.2221080105
  39. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1883. https://doi.org/10.1063/1.452140
  40. Szabo, A. J. Chem. Phys. 1991, 95, 2481 https://doi.org/10.1063/1.460952
  41. Naumann, W.; Szabo, A. J. Chem. Phys. 1997, 107, 402. https://doi.org/10.1063/1.474401
  42. Kipriyanov, A. A.; Igoshin, O. A.; Doktorov, A. B. Physica A 1999, 268, 567. https://doi.org/10.1016/S0378-4371(99)00020-5
  43. Igoshin, O. A.; Kipriyanov, A. A.; Doktorov, A. B. Chem. Phys. 1999, 244, 371. https://doi.org/10.1016/S0301-0104(99)00152-4
  44. Sakun, V. P. Physica A 1975, 80, 128 https://doi.org/10.1016/0378-4371(75)90163-6
  45. Kipriyanov, A. A.; Gopich, I. V.; Doktorov, A. B. Physica A 1998, 225, 347.
  46. Sung, J.; Shin, K. J.; Lee, S. J. Chem. Phys. 1997, 107, 9418. https://doi.org/10.1063/1.475239
  47. Yang, M.; Lee, S.; Shin, K. J. J. Chem. Phys. 1998, 108, 8557. https://doi.org/10.1063/1.476285
  48. Kapral, R. Advan. Chem. Phys. 1981, 48, 71. https://doi.org/10.1002/9780470142684.ch2
  49. Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; v.1,2, J. Wiley&Sons: New York, London, Sydney, Toronto, 1978.
  50. Taylor, J. R. Scattering Theory; John Wiley&Sons Inc.: New York, London, Sydney, Toronto, 1972.
  51. Newton, R. G. Scattering Theory of Waves and Particles; McGraw- Hill: New York, 1966.
  52. Fujita, S. Introduction to Non-equilibrium Quantum Statistical Mechanics; Saunders, W. B., Ed.; Philadelphia, 1966.
  53. Resibois, P.; de Leener, M. Classical Kinetic Theory of Fluids; John Wiley&Sons: New York, 1980.
  54. Klimontovich, Yu. L. Statistical Physics (in Russian); Nauka: Moscow, 1982.
  55. Bogolyubov, N. N.; Bogolyubov, N. N., Jr. Introduction to Quantum Statistical Mechanics (in Russian); Nauka: Moscow, 1984.
  56. Lukzen, N. N.; Doktorov, A. B.; Burshtein, A. I. Chem. Phys. 1986, 102, 289. https://doi.org/10.1016/0301-0104(86)80002-7
  57. Gopich, I. V.; Doktorov, A. B. J. Chem. Phys. 1996, 105, 2320. https://doi.org/10.1063/1.472189
  58. Gopich, I. V.; Kipriyanov, A. A.; Doktorov, A. B. Chem. Phys. 1999, 110, 10888.
  59. Kipriyanov, A. A.; Doktorov, A. B. Physica A 2000, 286, 109. https://doi.org/10.1016/S0378-4371(00)00190-4
  60. Ivanov, K. L.; Lukzen, N. N.; Doktorov, A. B.; Burshtein, A. I. J. Chem. Phys. 2001, 114, 1754. https://doi.org/10.1063/1.1317526
  61. Doktorov, A. B.; Kipriyanov, A. A. Physica A 2003, 319, 253. https://doi.org/10.1016/S0378-4371(02)01398-5
  62. Kipriyanov, A. A.; Doktorov, A. B. Physica A 2003, 326, 105 https://doi.org/10.1016/S0378-4371(03)00288-7
  63. Ivanov, K. L.; Lukzen, N. N.; Kipriyanov, A. A.; Doktorov, A. B. Phys. Chem. Chem. Phys. 2004, 6, 1706 https://doi.org/10.1039/b308267a
  64. Ivanov, K. L.; Lukzen, N. N.; Doktorov, A. B.; Burshtein, A. I. J. Chem. Phys. 2001, 114, 1754. https://doi.org/10.1063/1.1317526
  65. Doktorov, A. B.; Kipriyanov, Alexander A.; Kipriyanov, A. A. J. Chem. Phys. 2010, 132, 204502 https://doi.org/10.1063/1.3430641
  66. Kipriyanov, Alexander A.; Kipriyanov, A. A.; Doktorov, A. B. J. Chem. Phys. 2010, 133, 174508. https://doi.org/10.1063/1.3488101
  67. Kipriyanov, A. A.; Gopich, I. V.; Doktorov, A. B. Chem. Phys. 1999, 244, 361. https://doi.org/10.1016/S0301-0104(99)00054-3
  68. Kipriyanov, A. A.; Doktorov, A. B. Physica A 1996, 230, 75. https://doi.org/10.1016/0378-4371(96)00043-X
  69. Kipriyanov, A. A.; Gopich, I. V.; Doktorov, A. B. Chem. Phys. 1994, 187, 241 https://doi.org/10.1016/0301-0104(94)89007-2
  70. Kipriyanov, A. A.; Gopich, I. V.; Doktorov, A. B. Chem. Phys. 1995, 191, 101 https://doi.org/10.1016/0301-0104(94)00325-5
  71. Gopich I. V.; Szabo, A. J. Chem. Phys. 2002, 117, 507. https://doi.org/10.1063/1.1482701
  72. Handbook of Matematical Functions; Abramovitz, M., Stegun, I., Eds.; National Bureau of Standards, Applird Mathematics Series 55, 1964.

Cited by

  1. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics vol.141, pp.14, 2014, https://doi.org/10.1063/1.4897257
  2. On the time dependence of rate coefficients of irreversible reactions between reactants with anisotropic reactivity in liquid solutions vol.145, pp.6, 2016, https://doi.org/10.1063/1.4960174
  3. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations. vol.140, pp.18, 2012, https://doi.org/10.1063/1.4874001
  4. Calculation of the anharmonic effect on the main reactions referring to nitrous oxide in nitrogen-containing combustion mechanism vol.751, pp.None, 2020, https://doi.org/10.1016/j.cplett.2020.137534