DOI QR코드

DOI QR Code

Phase Transition of Confined Gold Nanoparticles: Replica Exchange Molecular Dynamics Study

  • Kim, Hyun-Sik (Department of Chemistry, Institute for Chemical Biology, Sejong University) ;
  • Li, Feng-Yin (Department of Chemistry, National Chung Hsing University) ;
  • Jang, Soon-Min (Department of Chemistry, Institute for Chemical Biology, Sejong University)
  • Received : 2011.12.05
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

The classical molecular dynamics simulation was used to study the phase transition of gold nanoparticles under confinement using Sutton-Chen (SC) potential. Metal gold nanoparticles with different number of atoms are subject to replica exchange molecular dynamics simulation for this purpose. The simulation showing the solidto-liquid melting temperature largely remains unaffected by confinement, while the confinement induces characteristic pre-melting at very low temperature depending on atom number in nanoparticles.

Keywords

References

  1. Baletto, F.; Ferrando, R. Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects. Rev. Mod. Phys. 2005, 77, 371. https://doi.org/10.1103/RevModPhys.77.371
  2. Aguado, A.; Jarrold, M. F. Melting and Freezing of Metal Clusters. Annu. Rev. Phys. Chem. 2011, 62, 151. https://doi.org/10.1146/annurev-physchem-032210-103454
  3. Haberland, H.; Hippler, T.; Donges, J.; Kostko, O.; Schmidt, M.; von Issendorff, B. Melting of Sodium Clusters: Where do the Magic Numbers Come From? Phys. Rev. Lett. 2005, 94.
  4. Breaux, G. A.; Benirschke, R. C.; Sugai, T.; Kinnear, B. S.; Jarrold, M. F. Hot and Solid Gallium Clusters: Too Small to Melt. Phys. Rev. Lett. 2003, 91.
  5. Dick, K.; Dhanasekaran, T.; Zhang, Z. Y.; Meisel, D. Sizedependent Melting of Silica-encapsulated Gold Nanoparticles. J. Am. Chem. Soc. 2002, 124, 2312. https://doi.org/10.1021/ja017281a
  6. Van Hoof, T.; Hou, M. Structural and Thermodynamic Properties of Ag-Co Nanoclusters. Phys. Rev. B 2005, 72.
  7. van der Klink, J. J.; Brom, H. B. NMR in Metals, Metal Particles and Metal Cluster Compounds. Prog. Nucl. Mag. Res. Sp. 2000, 36, 89
  8. Deepak, J.; Pradeep, T.; Waghmare, U. V. Interaction of Small Gold Clusters with Carbon Nanotube Bundles: Formation of Gold Atomic Chains. J. Phys.-Condens. Mat. 2010, 22.
  9. Barnard, A. S. Modelling of Nanoparticles: Approaches to Morphology and Evolution. Rep. Prog. Phys. 2010, 73.
  10. Sugita, Y.; Okamoto, Y. Replica-exchange Molecular Dynamics Method foR Protein Folding. Chem. Phys. Lett. 1999, 314, 141. https://doi.org/10.1016/S0009-2614(99)01123-9
  11. Sutton, A. P.; Chen, J. Y. Long-range Finnis-Sinclair Potentials. Philosophical Magazine Letters 1990, 61, 139. https://doi.org/10.1080/09500839008206493
  12. Mo, Y. X.; Lu, Y.; Wei, G. H.; Derreumaux, P. Structural Diversity of the Soluble Trimers of the Human Amylin (20-29) Peptide Revealed by Molecular Dynamics Simulations. J. Chem. Phys. 2009, 130.
  13. Martyna, G. J.; Klein, M. L.; Tuckerman, M. E. Nose-Hoover Chains: The Canonical Ensemble via Continious Dynamics. J. Chem. Phys. 1990, 97, 2635. https://doi.org/10.1063/1.463940
  14. Yang, Z.; Yang, X. N.; Xu, Z. J. Molecular Dynamics Simulation of the Melting Behavior of Pt-Au Nanoparticles with Core-shell Structure. J. Phys. Chem. C 2008, 112, 4937. https://doi.org/10.1021/jp711702y