DOI QR코드

DOI QR Code

Dynamics of Resonant Energy Transfer in OH Vibrations of Liquid Water

  • Yang, Mi-No (Department of Chemistry, Chungbuk National University)
  • Received : 2011.11.30
  • Accepted : 2012.01.04
  • Published : 2012.03.20

Abstract

Energy transfer dynamics of excited vibrational energy of OH stretching bonds in liquid water is theoretically studied. With time-dependent vibrational Hamiltonian obtained from a mixed quantum/classical calculation, we construct a master equation describing the energy transfer dynamics. Survival probability predicted by the master equation is compared with numerically exact one and we found that incoherent picture of energy transfer is reasonably valid for long-time population dynamics. Within the incoherent picture, we assess the validity of independent pair approximation (IPA) often introduced in the theoretical models utilized in the analysis of experimental data. Our results support that the IPA is almost perfectly valid as applied for the vibrational energy transfer in liquid water. However, proper incorporation of radial and orientational correlations between two OH bonds is found to be critical for a theory to be quantitatively valid. Consequently, it is suggested that the Forster model should be generalized by including the effects of the pair correlations in order to be applied for vibrational energy transfer in liquid water.

Keywords

References

  1. Bakker, H. J.; Skinner, J. L. Chem. Rev. 2010, 110(3), 1498. https://doi.org/10.1021/cr9001879
  2. Moller, K. B.; Rey, R.; Hynes, J. T. J. Phys. Chem. A 2004, 108(7), 1275. https://doi.org/10.1021/jp035935r
  3. Lawrence, C. P.; Skinner, J. L. J. Chem. Phys. 2002, 117(19), 8847. https://doi.org/10.1063/1.1514652
  4. Auer, B.; Kumar, R.; Schmidt, J. R.; Skinner, J. L. P. Natl. Acad. Sci. USA 2007, 104, 14215. https://doi.org/10.1073/pnas.0701482104
  5. Auer, B. M.; Skinner, J. L. J. Chem. Phys. 2008, 129, 214705. https://doi.org/10.1063/1.3012568
  6. Auer, B. M.; Skinner, J. L. Chem. Phys. Lett. 2009, 470, 13 https://doi.org/10.1016/j.cplett.2009.01.010
  7. Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Cohen, R. C.; Geissler, P. L.; Saykally, R. J. P. Natl. Acad. Sci. USA 2005, 102, 14171. https://doi.org/10.1073/pnas.0506899102
  8. Fecko, C. J.; Eaves, J. D.; Loparo, J. J.; Tokmakoff, A.; Geissler, P. L. Science 2003, 301(5640), 1698. https://doi.org/10.1126/science.1087251
  9. Asbury, J. B.; Steinel, T.; Stromberg, C.; Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L.; Fayer, M. D. J. Phys. Chem. A 2004, 108(7), 1107. https://doi.org/10.1021/jp036266k
  10. Asbury, J. B.; Steinel, T.; Kwak, K.; Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L.; Fayer, M. D. J. Chem. Phys. 2004, 121(24), 12431. https://doi.org/10.1063/1.1818107
  11. Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122, 054506. https://doi.org/10.1063/1.1839179
  12. Loparo, J. J.; Roberts, S. T.; Nicodemus, R. A.; Tokmakoff, A. Chem. Phys. 2007, 341(1-3), 218. https://doi.org/10.1016/j.chemphys.2007.06.056
  13. Torii, H. J. Phys. Chem. A 2006, 110, 9469. https://doi.org/10.1021/jp062033s
  14. Paarmann, A.; Hayashi, T.; Mukamel, S.; Miller, R. J. D. J. Chem. Phys. 2008, 128, 191103. https://doi.org/10.1063/1.2919050
  15. Piatkowski, L.; Eisenthal, K. B.; Bakker, H. J. Phys. Chem. Chem. Phys. 2009, 11, 9033. https://doi.org/10.1039/b908975f
  16. Yang, M.; Skinner, J. L. Phys. Chem. Chem. Phys. 2010, 12(4), 982. https://doi.org/10.1039/b918314k
  17. Woutersen, S.; Bakker, H. J. Nature 1999, 402, 507. https://doi.org/10.1038/990058
  18. Kraemer, D.; Cowan, M. L.; Paarmann, A.; Huse, N.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D. P. Natl. Acad. Sci. USA 2008, 105, 437. https://doi.org/10.1073/pnas.0705792105
  19. Jansen, T. L. C.; Auer, B. M.; Yang, M.; Skinner, J. L. J. Chem. Phys. 2010, 132(22), 224503. https://doi.org/10.1063/1.3454733
  20. Zhang, Z.; Piatkowski, L.; Bakker, H. J.; Bonn, M. Nat Chem 2011, 3(11), 888. https://doi.org/10.1038/nchem.1158
  21. Auer, B. M.; Skinner, J. L. J. Chem. Phys. 2008, 128, 224511. https://doi.org/10.1063/1.2925258
  22. Yang, M.; Li, F.; Skinner, J. L. J. Chem. Phys. 2011, 135(16), 164505. https://doi.org/10.1063/1.3655894
  23. Tachiya, M. Radiation Physics and Chemistry 1983, 21, 167.
  24. Szabo, A. J. Phys. Chem. 1989, 93, 6929. https://doi.org/10.1021/j100356a011
  25. Baumann, J.; Fayer, M. D. J. Chem. Phys. 1986, 85, 4087
  26. Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L. J. Chem. Phys. 2004, 120, 8107. https://doi.org/10.1063/1.1683072
  27. Skinner, J. L.; Auer, B.; Lin, Y. S. Adv. Chem. Phys. 2009, 142, 59. https://doi.org/10.1002/9780470475935.ch2
  28. Lin, Y. S.; Auer, B.; Skinner, J. L. J. Chem. Phys. 2009, 131, 144511. https://doi.org/10.1063/1.3242083
  29. Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys. 2005, 123(4), 044513. https://doi.org/10.1063/1.1961472
  30. Nienhuys, H.-K.; Woutersen, S.; Santen, R. A. V.; Bakker, H. J. J. Chem. Phys. 1999, 111(4), 1494. https://doi.org/10.1063/1.479408
  31. Deàk, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104(21), 4866. https://doi.org/10.1021/jp994492h
  32. Lock, A. J.; Bakker, H. J. J. Chem. Phys. 2002, 117(4), 1708. https://doi.org/10.1063/1.1485966
  33. Lindner, J.; Vöhringer, P.; Pshenichnikov, M. S.; Cringus, D.; Wiersma, D. A.; Mostovoy, M. Chem. Phys. Lett. 2006, 421(4-6), 329. https://doi.org/10.1016/j.cplett.2006.01.081
  34. Yang, M.; Fleming, G. R. Chem. Phys. 2002, 282, 163. https://doi.org/10.1016/S0301-0104(02)00604-3
  35. Jang, S. J. Chem. Phys. 2007, 127(17), 174710. https://doi.org/10.1063/1.2779031

Cited by

  1. A New Insight for Faraday’s Law vol.04, pp.11, 2014, https://doi.org/10.4236/wjm.2014.411031
  2. Range of DVR parameters for the Calculation of Vibrational Energy of Anharmonic Oscillators vol.60, pp.3, 2016, https://doi.org/10.5012/jkcs.2016.60.3.163
  3. Dimension of discrete variable representation for mixed quantum/classical computation of three lowest vibrational states of OH stretching in liquid water vol.146, pp.5, 2017, https://doi.org/10.1063/1.4974934
  4. Effects of excluded volume and correlated molecular orientations on F?rster resonance energy transfer in liquid water. vol.140, pp.14, 2012, https://doi.org/10.1063/1.4870937
  5. Local Orientational Order in Liquids Revealed by Resonant Vibrational Energy Transfer vol.113, pp.20, 2012, https://doi.org/10.1103/physrevlett.113.207801
  6. Validity of Förster Theory for Vibrational Energy Transfer in Low-Dimensional Water vol.119, pp.50, 2015, https://doi.org/10.1021/acs.jpcb.5b10371