DOI QR코드

DOI QR Code

A mathematical model of the commercial harvest of Palmaria palmata (Palmariales, Rhodophyta) on Digby Neck, Nova Scotia, Canada

  • Lukeman, Ryan J. (Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University) ;
  • Beveridge, Leah F. (Department of Biology, St. Francis Xavier University) ;
  • Flynn, Andrea D. (Department of Biology, St. Francis Xavier University) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2012.01.26
  • Accepted : 2012.02.29
  • Published : 2012.03.15

Abstract

A mathematical model of the commercial harvest of Palmaria palmata (Dulse) is presented based on a logistic model and field data collected on Digby Neck, Nova Scotia from 14 harvested shores during May to August, 2010. Field observations used to estimate model parameters included cover of Dulse before and after harvest from Dulse dominated boulders for which surface area was estimated, and from which fresh biomass of harvested Dulse was weighed. Over all the surveys the average harvest fraction was about 50%, and the total resource was about $1,600g\;m^{-2}$. With growth rates in excess of 4% per day and a 50% harvest of the standing crop each month, the model suggests that the Dulse resource is sustainable at current harvest levels.

Keywords

References

  1. Aberg, P. 1992a. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73:1473-1487. https://doi.org/10.2307/1940691
  2. Aberg, P. 1992b. Size-based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology 73:1488-1501. https://doi.org/10.2307/1940692
  3. Ang, P. O. & De Wreede, R. E. Jr. 1990. Matrix models for algal life history stages. Mar. Ecol. Progr. Ser. 59:171-181. https://doi.org/10.3354/meps059171
  4. Baardseth, E. 1955. Regrowth of Ascophyllum nodosum after harversting. Institute for Industrial Research and Standards, Dublin, 67 pp.
  5. Bird, C. J. & Van der Meer, J. P. 1993. Systematics of economically important marine algae: a Canadian perspective. Can. J. Bot. 71:361-369. https://doi.org/10.1139/b93-040
  6. Chambers, P. A., DeWreede, R. E., Irlandi, E. A. & Vandermeulen, H. 1999. Management issues in aquatic macrophyte ecology: a Canadian perspective. Can. J. Bot. 77:471-487.
  7. Chopin, T. & Ugarte, R. 2006. The seaweed resources of eastern Canada. In Critchley, M. & Largo, D. B. (Eds.) World Seaweed References. An Authoritative Reference System. DVD ROM. ETI Bioinformatics, Amsterdam.
  8. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2011. Bioremdiation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. DOI: 10.1007/s10811-011-9734-8.
  9. Cornish, M. L. & Garbary, D. J. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155-171. https://doi.org/10.4490/algae.2010.25.4.155
  10. Duarte, P. & Ferreira, J. G. 1997. A model for the simulation of macroalgal population dynamics and productivity. Ecol. Model. 98:199-214. https://doi.org/10.1016/S0304-3800(96)01915-1
  11. Edelstein, T., Chen, L. & McLachlan, J. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Can. J. Bot. 48:621-629. https://doi.org/10.1139/b70-086
  12. Edelstein-Keshet, L. 1988. Mathematical models in biology. Random House, New York, NY, 586 pp.
  13. Faes, V. A. & Viejo, R. M. 2003. Structure and dynamics of a population of Palmaria palmata (Rhodophyta) in Northern Spain. J. Phycol. 39:1038-1049. https://doi.org/10.1111/j.0022-3646.2003.02-142.x
  14. Ffrench, R. A. 1974. Rhodymenia palmata: an appraisal of the Dulse industry. Laboratory technical report. Atlantic Regional Laboratory, National Research Council of Canada, Ottawa, 49 pp.
  15. Gabrielson, P. W. & Garbary, D. 1986. Systematics of red algae (Rhodophyta). CRC Crit. Rev. Plant Sci. 3:325-366. https://doi.org/10.1080/07352688609382215
  16. Garbary, D. 1976. Life-forms of algae and their distribution. Bot. Mar. 19:97-106. https://doi.org/10.1515/botm.1976.19.2.97
  17. Garbary, D. J., Beveridge, L. F., Flynn, A. D. & White, K. L. 2012. Population ecology of Palmaria palmata (Palmariales) from harvested and non-harvested beds on Digby Neck, Nova Scotia. Algae 27:33-42. https://doi.org/10.4490/algae.2012.27.1.033
  18. Lee, C. S. & Ang, P. Jr. 1991. A simple model for seaweed growth and optimal harvesting strategy. Ecol. Model. 55:67-74. https://doi.org/10.1016/0304-3800(91)90065-9
  19. MacFarlane, C. I. 1964. The seaweed industry of the Maritime Provinces. In De Virville, A. D. & Feldman, J. (Eds.) Proc. 4th Int. Seaweed Symp., Pergamon Press, Oxford, pp. 414-419.
  20. MacFarlane, C. I. 1966. A report on some aspects of the seaweed industry in the Maritime Provinces of Canada. Industrial Development Service, Department of Fisheries of Canada, Ottawa, 24 pp.
  21. Martinez, B., Viejo, R. M., Rico, J. M., Rødde, R. H., Faes, V. A., Oliveros, J. & Álvarez, D. 2006. Open sea cultivation of Palmaria palmata (Rhodophyta) on the northern Spanish coast. Aquaculture 254:376-387. https://doi.org/10.1016/j.aquaculture.2005.10.025
  22. Morgan, K. C., Shacklock, P. F., Simpson, F. J. 1980. Some aspects of the culture of Palmaria palmata in greenhouse tanks. Bot. Mar. 23:765-770.
  23. Morgan, K. C. & Simpson, F. J. 1981a. The cultivation of Palmaria palmata: effect of light intensity and nitrate supply on growth and chemical composition. Bot. Mar. 24:273-277. https://doi.org/10.1515/botm.1981.24.5.273
  24. Morgan, K.C. & Simpson, F. J. 1981b. The cultivation of Palmaria palmata: effect of light intensity and temperature on growth and chemical composition. Bot. Mar. 24:547-552. https://doi.org/10.1515/botm.1981.24.10.547
  25. Nyman, M. A., Brown, M. T., Neushul, M. & Keogh, J. A. 1990. Macrocystis pyrifera in New Zealand: testing two mathematical models for whole plant growth. J. Appl. Phycol. 2:249-257. https://doi.org/10.1007/BF02179782
  26. Pang, S. & Lüning, K. 2004. Tank cultivation of the red alga Palmaria palmata: effects of intermittent light on growth rate, yield and growth kinetics. J. Appl. Phycol. 16:93-99. https://doi.org/10.1023/B:JAPH.0000044779.30182.d8
  27. Rhatigan, P. 2009. Irish seaweed kitchen: the comprehensive guide to healthy everyday cooking with seaweeds. Booklink, Hollywood, LA, 288 pp.
  28. Santos, R. & Nyman, M. 1998. Population modelling of Gelidium sesquipedale (Rhodophyta, Gelidiales). J. Appl. Phycol. 10:261-272. https://doi.org/10.1023/A:1008083926349
  29. Scrosati, R. 2004. A discrete-time logistic model of frond dynamics for Mazzaella parksii (Rhodophyta, Gigartinales). J. Appl. Phycol. 16:69-72. https://doi.org/10.1023/B:JAPH.0000019072.58963.4c
  30. Seip, K. L. 1980. A computational model for growth and harvesting of the marine alga Ascophyllum nodosum. Ecol. Model. 8:189-199. https://doi.org/10.1016/0304-3800(80)90037-X
  31. Sharp, G. & Bodiguel, C. 2001. Introducing integrated management, ecosystem and precautionary approaches in seaweed management: the Ascophyllum nodusum (rockweed) harvest in New Brunswick, Canada and implications for industry. In Chapman, A. R. O., Anderson, R. J., Vreeland, V. J. & Davison, I. (Eds.) Proc. 17th Int. Seaweed Symp., Oxford University Press, New York, pp. 107-114.
  32. Smith, B. D. 1986. Implications of population dynamics and interspecific competition for harvest management of the seaweed Laminaria. Mar. Ecol. Prog. Ser. 33:7-18. https://doi.org/10.3354/meps033007
  33. South, G. R., Tittley, I., Farnham, W. F. & Keats, D. W. 1988. A survey of the benthic marine algae of southwestern New Brunswick, Canada. Rhodora 90:419-451.
  34. Taylor, W. R. 1957. Marine algae of the northeastern coast of North America. University of Michigan Press, Ann Arbor, MI, 509 pp.
  35. Tsoularis, A. & Wallace, J. 2002. Analysis of logistic growth models. Math. Biosci. 179:21-55. https://doi.org/10.1016/S0025-5564(02)00096-2
  36. Ugarte, R. A., Critchley, A., Serdynska, A. R. & Deveau, J. P. 2009. Changes in composition of rockweed (Ascophyllum nodosum) beds due to possible recent increase in sea temperature in eastern Canada. J. Appl. Phycol. 21:591-598. https://doi.org/10.1007/s10811-008-9397-2
  37. Vadas, R. L., Beal, B. F., Wright, W. A., Emerson, S. & Nickl, S. 2004. Biomass and productivity of red and green algae in Cobscook Bay, Maine. Northeast. Nat. 11(Special issue 2):163-196.
  38. Van der Meer, J. P. & Todd, E. R. 1980. The life history of Palmaria palmata in culture: a new type for the Rhodophyta. Can. J. Bot. 58:1250-1256. https://doi.org/10.1139/b80-155
  39. Verhulst, P. -F. 1838. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10:113-121.
  40. Wilson, J. S., Bird, C. J., McLachlan, J. & Taylor, A. R. A. 1979. An annotated checklist and distribution of benthic marine algae of the Bay of Fundy. Meml. Univ. Newfoundland Occas. Pap. Biol. 2:1-65.
  41. Yuan, Y. V., Westcott, N. D., Hu, C. & Kitts, D. D. 2009. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (Dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem. 112:321-328. https://doi.org/10.1016/j.foodchem.2008.05.066
  42. Zhang, X., Shuai, Z. & Wang, K. 2003. Optimal impulsive harvesting policy for single population. Nonlinear Anal. Real World Appl. 4:639-651. https://doi.org/10.1016/S1468-1218(02)00084-6

Cited by

  1. Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada vol.27, pp.1, 2012, https://doi.org/10.4490/algae.2012.27.1.033
  2. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system vol.29, pp.1, 2014, https://doi.org/10.4490/algae.2014.29.1.035
  3. Key ecological challenges in sustainable algal biofuels production vol.37, pp.4, 2015, https://doi.org/10.1093/plankt/fbv053