Abstract
In this paper we applied the optimal mixture number estimation technique in GMM(Gaussian mixture model) using BIC(Bayesian information criterion) and MDL(minimum description length) as a model selection criterion for environmental sounds recognition. In the experiment, we extracted 12 MFCC(mel-frequency cepstral coefficients) features from 9 kinds of environmental sounds which amounts to 27747 data and classified them with GMM. As mentioned above, BIC and MDL is applied to estimate the optimal number of mixtures in each environmental sounds class. According to the experimental results, while the recognition performances are maintained, the computational complexity decreases by 17.8% with BIC and 31.7% with MDL. It shows that the computational complexity reduction by BIC and MDL is effective for environmental sounds recognition using GMM.
본 논문에서는 환경음 인식에 GMM(Gaussain mixture model)을 이용할 때 MDL(minimum description length)와 BIC(Bayesian information criterion) 모델선택 기준을 이용하여 최적의 혼합모델 개수를 결정하는 방법에 대해 다루었다. 실험은 모두 9가지 종류의 환경음으로부터 12차 MFCC(mel-frequency cepstral coefficients) 특징 27747개를 추출하고 이를 GMM으로 분류하였다. 각 환경음 클래스의 최적 혼합모델 개수를 추정 하기위해 MDL과 BIC를 적용하고 그 결과를 고정 개수의 혼합모델을 사용한 경우와 비교하였다. 실험 결과에 따르면 혼합모델 선택 방법을 적용한 경우가 그렇지 않은 경우에 비해 거의 유사한 인식성능을 유지하면서 계산복잡도는 BIC와 MDL를 통해 각각 17.8%와 31.7%가 감소하는 것을 확인하였다. 이는 GMM을 이용한 환경음 인식에서 BIC와 MDL 적용을 통해 계산복잡도를 효과적으로 감소시킬 수 있음을 보여준다.