DOI QR코드

DOI QR Code

샌드위치 복합재료의 압축 특성에 관한 시뮬레이션 해석

Simulation Analysis on the Compression Property of Sandwich Composite

  • 방승옥 (공주대학교 대학원 기계공학과) ;
  • 국정한 (한국기술교육대학교 기계정보공학부) ;
  • 김세환 (공주대학교 기계자동차공학부) ;
  • 조재웅 (공주대학교 기계자동차공학부)
  • Bang, Seung-Ok (Division of Mechanical Engineering, Graduate School, Kongju University) ;
  • Kook, Jeong-Han (School of Mechanical Engineering, Korea University of Technology and Education) ;
  • Kim, Sei-Hwan (Division of Mechanical & Automotive Engineering, Kongju University) ;
  • Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju University)
  • 투고 : 2011.12.29
  • 심사 : 2012.02.10
  • 발행 : 2012.02.29

초록

본 연구에서는 다공성 심재를 갖는 샌드위치 복합재료의 압축해석을 수행하였다. 알루미늄 폼 및 허니컴 코어 샌드위치 복합재료의 유한요소모델은 솔리드 요소를 적용하였다. 알루미늄 폼 코어의 경우에는 유효등가손상모델을 적용하였다. 면내 압축해석에서 알루미늄 폼 및 허니컴 코어 샌드위치의 압축 최대하중이 비슷했다. 그러나 알루미늄 허니컴 코어 샌드위치의 하중 지지구간이 더 길었다. 면외 압축에서는 알루미늄 허니컴 코어 샌드위치의 압축 최대하중이 알루미늄 폼 코어 샌드위치보다 높게 나왔다. 시뮬레이션 해석을 통하여 샌드위치 복합재료의 압축 거동을 얻을 수 있었다.

In this study, compression analyses of sandwich composites with porous core were carried out. Finite element models of aluminum foam and honeycomb core sandwich composite material were applied solid element. In the case of aluminum foam core, valid equivalence damage model was applied. In the in-plane compression analysis, the maximum load of aluminum foam core sandwich was similar with that of aluminum honeycomb core sandwich. But in case of aluminum honeycomb core sandwich, the load support region becomes longer in comparison with aluminum foam core sandwich. In the out-plane compression analysis, compression maximum load of aluminum honeycomb core sandwich was higher than that of aluminum foam core sandwich. Through these Simulation analysis, obtains the behavior of sandwich composites.

키워드

참고문헌

  1. A. Reyes, O. S. Hopperstad, T. Berstad, A. G. Hanssen and M. Langseth, "Constitutive Modeling of Aluminum Foam Including Fracture and Statistical Variation of Density", European Journal of Mechanics - A/Solids, Vol. 22, Issue 6, pp. 815-835, November-December, 2003. https://doi.org/10.1016/j.euromechsol.2003.08.001
  2. Rahul Jhaver, Hareesh Tippur, Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC), Materials Science and Engineering: A, Vol. 499, Issues 1-2, pp. 507-517, January, 2009. https://doi.org/10.1016/j.msea.2008.09.042
  3. S. S. Kim, "Study of Proprties Foaming Glass from Waste Glass", 2007 Spring Conference Proceeding of KAIS, pp. 126-128, May, 2007.
  4. W. H. Lee, S. C. Han and W. T. Park, "Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings", Transactions of KAIS, Vol. 11, No. 12, pp. 5199-5206, December, 2010. https://doi.org/10.5762/KAIS.2010.11.12.5199
  5. M. De Giorgi, A. Carofalo, V. Dattoma, R. Nobile and F. Palano, "Aluminum Foams Structural Modelling", Computers & Structures, Vol. 88, Issues 1-2, pp. 25-35, January, 2010. https://doi.org/10.1016/j.compstruc.2009.06.005
  6. A. K. Kim, Kazi Tunvir, S. J. Park, G. D. Jeong, Md Anwarul Hasan and S. S. Cheon, "Study on Compressive Behavior of Heterogeneous Al-alloy Foam by Cruciform-Hemisphere Model", Modelling and Simulation in Materials Science and Engineering, Vol. 14, Issue 6, pp. 933, 2006. https://doi.org/10.1088/0965-0393/14/6/004
  7. H.X. Zhu, S.M. Thorpe, A.H. Windle, The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs, International Journal of Solids and Structures, Vol. 43, Issue 5, pp. 1061-1078, March, 2006. https://doi.org/10.1016/j.ijsolstr.2005.05.008