디지털융복합연구 (Journal of Digital Convergence)
- 제10권10호
- /
- Pages.333-338
- /
- 2012
- /
- 2713-6434(pISSN)
- /
- 2713-6442(eISSN)
DOI QR Code
하이브리드 인식 기술을 이용한 전사적 인적자원관리
Enterprise Human Resource Management using Hybrid Recognition Technique
- 투고 : 2012.10.27
- 심사 : 2012.11.20
- 발행 : 2012.11.30
초록
인적자원관리는 IT기술을 접목하여 다양한 변화를 가져오고 있다. 특히 HRM이 집단차원의 관리, 물리적 사업장, 근무시간의 제약, 개인적 접촉 등 비과학적 방법으로 이루어졌다면, 현재의 전자적 인적자원관리(e-HRM)는 개별 차원의 관리, 가상 작업 공간의 등장(예. 스마트워크센터, 홈워크 등), 근무시간의 유연화 및 탄력화, 컴퓨터 기반의 통계자료 및 과학적 방법에 의한 분석 및 관리를 근간으로 이루어지고 있다는 점에서 큰 차이가 있다. 따라서 환경의 변화에 따라 기업들은 보다 효율적이고 전략적인 인적자원 관리 체계를 구축하기 위하여 RFID 카드, 지문인식 근태관리 시스템 등 다양한 기술을 도입하고 있다. 본 논문에서는 효율적인 전사적 인적자원 관리를 위한 멀티 카메라를 이용하여 2D 및 3D 얼굴인식기술 기반의 근태관리, 출입통제관리 시스템을 개발하였다. 여기서는 기존 2D방식의 얼굴인식기술이 가지고 있는 문제점인 조명 및 자세에 따른 인식률 저하를 극복하여 90% 이상의 인식률을 확보하였다. 또한 3D 얼굴인식방식의 문제점인 많은 계산량을 개선하기 위하여 3D와 2D 인식기술을 병행하여 처리함으로써 하이브리드 영상인식 및 인식속도를 개선할 수 있었다.
Human resource management is bringing the various changes with the IT technology. In particular, if HRM is non-scientific method such as group management, physical plant, working hours constraints, personal contacts, etc, the current enterprise human resources management(e-HRM) appeared in the individual dimension management, virtual workspace (for example: smart work center, home work, etc.), working time flexibility and elasticity, computer-based statistical data and the scientific method of analysis and management has been a big difference in the sense. Therefore, depending on changes in the environment, companies have introduced a variety of techniques as RFID card, fingerprint time & attendance systems in order to build more efficient and strategic human resource management system. In this paper, time and attendance, access control management system was developed using multi camera for 2D and 3D face recognition technology-based for efficient enterprise human resource management. We had an issue with existing 2D-style face-recognition technology for lighting and the attitude, and got more than 90% recognition rate against the poor readability. In addition, 3D face recognition has computational complexities, so we could improve hybrid video recognition and the speed using 3D and 2D in parallel.