참고문헌
- D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology. 83 (2002), 28-34. https://doi.org/10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
- M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Math. Comput. Modelling. 51 (2010), 44-52. https://doi.org/10.1016/j.mcm.2009.07.015
- F. Bartumeus, D. Alonso and J. Catalan, Self-organized spatial structures in a ratio-dependent predator-prey model, Physica A. 295 (2001), 53-57. https://doi.org/10.1016/S0378-4371(01)00051-6
- D.L. Benson, J. Sherratt and P.K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull.Math.Biol. 55 (1993), 365-384. https://doi.org/10.1007/BF02460888
- J.M. Chung and E. Peacock-Lpez, Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion, J. Chem. Phys. 127 (2007), 174903. https://doi.org/10.1063/1.2784554
- J.M. Chung and E. Peacock-Lpez, Cross-diffusion in the templator model of chemical self-replication, Phys. Let. A. 371 (2007), 41-47. https://doi.org/10.1016/j.physleta.2007.04.114
- D.L. DeAngelis, R.L. Goldstein and R.V. O'Neill, A model for trophic interaction, Ecology. 56 (1975), 881-892. https://doi.org/10.2307/1936298
- B. Dubey , B. Das and J. Hussain, A predator - prey interaction model with self and cross-diffusion, Ecol. Model. 141 (2001), 67-76. https://doi.org/10.1016/S0304-3800(01)00255-1
- Y.H. Fan and W.T. Li, Global asymptotic stability of a ratio-dependent predator prey system with diffusion, J.Comput.Appl.Math. 188 (2006), 205-227. https://doi.org/10.1016/j.cam.2005.04.007
- M.R. Garvie, Finite-Difference schemes for reaction diffusion equations modelling predator prey interactions in MATLAB, Bull.Math.Biol. 69 (2007), 931-956. https://doi.org/10.1007/s11538-006-9062-3
- C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey model, Bull.Math.Biol. 61 (1999), 19-32. https://doi.org/10.1006/bulm.1998.0072
- S.A. Levin, T.M. Powell and J.H. Steele, Patch Dynamics, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1993.
- P.P. Liu and Z. Jin, Pattern formation of a predator-prey model, Nonlinear Anal. Hybrid Syst. 3 (2009), 177-183. https://doi.org/10.1016/j.nahs.2008.12.004
- Y. Lou andW. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations. 154 (1999), 157-190 . https://doi.org/10.1006/jdeq.1998.3559
- E.A. McGehee and E. Peacock-Lpez, Turing patterns in a modified Lotka Volterra model, Phys. Lett. A. 342 (2005), 90-98. https://doi.org/10.1016/j.physleta.2005.04.098
- A. Morozov, S.Petrovskii and B.L. Li, Bifurcations and chaos in a predator-prey system with the allee effect, Proc. R. Soc. Lond. B 271 (2004), 1407-1414. https://doi.org/10.1098/rspb.2004.2733
- J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
- M. Sambath, S. Gnanavel and K. Balachandran, Stability and Hopf bifurcation of a diffusive predator-prey model with predator saturation and competition, Anal. Appl. 1-18 (2012) DOI:10.1080/00036811.2012.742185
- J.A. Sherratt, Turing bifurcations with a temporally varying diffusion coefficient, J.Math.Biol. 33 (1995), 295-308.
- X.K. Sun, H.F. Huo and H. Xiang, Bifurcation and stability analysis in predator-prey model with a stagestructure for predator, Nonlinear Dyn. 58 (2009), 497-513. https://doi.org/10.1007/s11071-009-9495-y
- A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 237 (1952), 37-72. https://doi.org/10.1098/rstb.1952.0012
피인용 문헌
- SPATIOTEMPORAL DYNAMICS OF A PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE vol.3, pp.1, 2012, https://doi.org/10.11948/2013006