Application of Off-axis Correction Method for EPID Based IMRT QA

EPID를 사용한 세기조절방사선치료의 정도관리에 있어 축이탈 보정(Off-axis Correction)의 적용

  • Cho, Ilsung (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kwark, Jungwon (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Sung Ho (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, Seung Do (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jeong, Dong Hyeok (Research Center, Dong-nam Institute of Radiological & Medical Sciences) ;
  • Cho, Byungchul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 조일성 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 곽정원 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 박성호 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 정동혁 (동남권원자력의학원 연구센터) ;
  • 조병철 (울산대학교 의과대학 서울아산병원 방사선종양학과)
  • Received : 2012.12.07
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

The Varian PORTALVISION (Varian Medical Systems, US) shows significant overresponses as the off-center distance increases compared to the predicted dose. In order to correct the dose discrepancy, the off-axis correction is applied to VARIAN iX linear accelerators. The portal dose for $38{\times}28cm^2$ open field is acquired for 6 MV, 15 MV photon beams and also are predicted by PDIP algorithm under the same condition of the portal dose acquisition. The off-axis correction is applied by modifying the $40{\times}40cm^2$ diagonal beam profile data which is used for the beam profile calibration. The ratios between predicted dose and measured dose is modeled as a function of off-axis distance with the $4^{th}$ polynomial and is applied to the $40{\times}40cm^2$ diagonal beam profile data as the weight to correct measured dose by EPID detector. The discrepancy between measured dose and predicted dose is reduced from $4.17{\pm}2.76$ CU to $0.18{\pm}0.8$ CU for 6 MV photon beam and from $3.23{\pm}2.59$ CU to $0.04{\pm}0.85$ CU for 15 MV photon beam. The passing rate of gamma analysis for the pyramid fluence patten with the 4%, 4 mm criteria is improved from 98.7% to 99.1% for 6 MV photon beam, from 99.8% to 99.9% for 15 MV photon beam. IMRT QA is also performed for randomly selected Head and Neck and Prostate IMRT plans after applying the off-axis correction. The gamma passing rare is improved by 3% on average, for Head and Neck cases: $94.7{\pm}3.2%$ to $98.2{\pm}1.4%$, for Prostate cases: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$. The gamma analysis criteria is 3%, 3 mm with 10% threshold. It is considered that the off-axis correction might be an effective and easily adaptable means for correcting the discrepancy between measured dose and predicted dose for IMRT QA using EPID in clinic.

Varian의 전자표탈영상장치(EPID, electronic portal imaging device) 검출기로 측정된 선량값은 PDIP알고리즘으로 예측된 선량 값과 비교하여 빔 중심으로부터 EPID 검출기 모서리로 갈수록 측정된 선량 값이 커지는 경향을 가지고 있다. 이를 손쉽게 임상에서 보정할 수 있는 축이탈보정(off-axis correction)알고리즘이 제안되어 본원에 설치된 Varian 선형가속기를 대상으로 적용하였다. $38{\times}28cm$의 조샤야를 열고 SSD 100 cm에서 6 MV, 15 MV 광자빔을 100 MU 조사하여 선량을 측정하고 이를 PDIP 알고리즘을 적용한 예측 선량과 비교하였다. 측정된 선량과 예측된 선량값의 비율을 축이탈거리의 4차 다항함수로 근사하여 가로선량분포 보정에 사용되는 $40{\times}40cm$ 주대각 빔 측정 데이터에 가중치로 두어 축이탈 보정을 실시했다. 보정전 $38{\times}28cm$ 조사면에서 계산된 선량값과 측정된 선량사이에는 6 MV 빔의 경우 $4.17{\pm}2.76$ CU, 15 MV 빔은 $3.23{\pm}2.59$ CU의 차이가 있었으나 보정 후 두 선량값의 차이는 각각 $0.18{\pm}0.8$ CU, $04{\pm}0.85$ CU로 1% 이내로 줄였다. PDIP 알고리즘 사용준비에 사용되는 피라미드 형태 유동량(fluence)의 감마 성공률(gamma pass rate)은 절대 선량 측정값을 기준으로 허용기준 4%, 4 mm에서 6 MV는 98.7%, 15 MV는 99.1%로 나타났으며 보정 후 각각 99.8%와 99.9%로 향상되었다. 축이탈 보정을 실시하고 임의로 두경부암과 전립선암의 세기조절방사선치료계획을 선정하여 세기조절방사선 치료의 정도관리를 진행했으며 보정 전과 비교하여 허용기준 3%, 3 mm에서 감마 성공률이 보정 전, 후 각각 두경부암: $94.7{\pm}3.2%$, $98.2{\pm}1.4%$ 및 전립선암: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$로 평균적으로 3% 향상되었다. 축이탈보정은 EPID를 사용하는 세기조절 방사선치료의 정도관리에 있어 축이탈거리에 따른 계산된 선량값과 측정된 선량값의 차이를 효과적 보정하는 방법으로 임상에서 쉽게 적용하여 사용할 수 있을 것으로 기대된다.

Keywords

References

  1. Wong JW, Slessinger ED, Hermes RE, et al: Portal dose images I: quantitative treatment plan verification. Int J Radiat Oncol Biol Phys 18:1455-1463 (1990) https://doi.org/10.1016/0360-3016(90)90322-B
  2. Ying X, Geer LY, Wong JW: Portal dose images II: patient dose estimation. Int J Radiat Oncol Biol Phys 18:1465-1475 (1990) https://doi.org/10.1016/0360-3016(90)90323-C
  3. Kirby MC, Williams PC: The use of an electronic portal imaging device for exit dosimetry and quality control measurements. Int J Radiat Oncol Biol Phys 31:593-603 (1995) https://doi.org/10.1016/0360-3016(94)00388-2
  4. Pasma KL, Heijmen BJ, Kroonwijk M, et al: Portal dose image prediction for dosimetric treatment verification in radiotherapy. I. An algorithm for open beams. Med Phys 25:830- 840 (1998) https://doi.org/10.1118/1.598293
  5. McCurdya BMC, Luchkaet K, Pistorius S: Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device. Med Phys 28(6): 911-924 (2001) https://doi.org/10.1118/1.1374244
  6. Greer P: Correction of pixel sensitivity variation and off-axis response for amorphous silicon EPID dosimetry. Med Phys 32: 3558-3568 (2005) https://doi.org/10.1118/1.2128498
  7. Greer P: Off-axis dose response characteristics of an amorphous silicon electronic portal imaging device. Med Phys 34: 3815-3824 (2007) https://doi.org/10.1118/1.2779944
  8. Bailey D: An effective correction algorithm for off-axis portal dosimetry errors. Med Phys 36(9):4089-4094 (2009) https://doi.org/10.1118/1.3187785
  9. ROOT-An Object Oriented Data Analysis Framework, http://root.cern.ch
  10. Moore JA, Siebers JV: Verification of the optimal backscatter for an aSi electronic portal imaging device. Phys Med Biol 50(10):2341-2350 (2005) https://doi.org/10.1088/0031-9155/50/10/011
  11. Siebers JV, Kim JO, Ko L, et al: Monte Carlo computation of dosimetric amorphous silicon electronic portal images. Med Phys 317:2135-2146 (2004)
  12. Vinall AJ, Williams AJ, Currie VE, et al: Practical guidelines for routine intensity-modulated radiotherapy verification: pre- treatment verification with portal dosimetry and treatment verification with in vivo dosimetry. Br J Radiol 83(995):949-957 (2010) https://doi.org/10.1259/bjr/31573847