Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer

두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발

  • Choi, Joon-Yong (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Won, Young-Jin (Department Radiation Oncology, Inje University lsan Paik Hospital) ;
  • Park, Ji-Yeon (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Kim, Jong-Won (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Moon, Bong-Ki (Department Radiation Oncology, Inje University lsan Paik Hospital) ;
  • Yoon, Hyong-Geun (Department Radiation Oncology, Dongguk University Medical Center) ;
  • Moon, Soo-Ho (Department Radiation Oncology, Dongguk University Medical Center) ;
  • Jeon, Jong-Byeong (Department Radiation Oncology, Dongguk University Medical Center) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine)
  • 최준용 (가톨릭대학교 의과대학 의공학교실) ;
  • 원영진 (인제대학교 일산백병원 방사선종양학과) ;
  • 박지연 (가톨릭대학교 의과대학 의공학교실) ;
  • 김종원 (가톨릭대학교 의과대학 의공학교실) ;
  • 문봉기 (인제대학교 일산백병원 방사선종양학과) ;
  • 윤형근 (동국대학교 의료원 방사선종양학과) ;
  • 문수호 (동국대학교 의료원 방사선종양학과) ;
  • 전종병 (동국대학교 의료원 방사선종양학과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2012.08.18
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

두경부암 방사선치료 시 공동 경계면 및 주변 치료 부위의 선량 균일도 향상을 위하여 조직 등가의 thermoplastic 구강 보상체를 개발하였다. Thermoplastic의 유용성 평가를 위해, 기존에 사용해 오던 치과용 인상재료인 paraffin, alginate, 그리고 putty로 제작한 각 구강 보상체의 물성 및 선량 분포 향상도를 비교하였다. 물성 평가에는 강도 평가(압축 실험, 낙하 실험)와 자연변형도(시간에 따른 체적 변화) 평가를 수행하였으며, 개발한 선량 검증용 팬톰에 삽입한 유리선량계와 Gafchromic EBT2 필름을 이용하여 표면선량, 공동 경계면 선량 및 빔 측면도를 측정하여 전달 선량을 평가하였다. 두 달간 각 구강 보상체의 자연변형도 평가하였을 때, alginate는 수분증발로 최대 80% 체적 변화를 보였으나, thermoplastic을 포함한 나머지 조직 등가 물질은 체적 변화가 3% 미만으로 나타났다. 강도 평가 중 5회 반복한 1.5 m 높이의 자유 낙하실험에서 paraffin은 충격에 의하여 파손이 발생되었으나, thermoplastic은 낙하에 의한 파손이 발생되지 않았으며, 압축 강도 실험에서도 paraffin에 비하여 8배 이상의 높은 힘에서도 파손되지 않았다. 유리선량계를 이용한 선량 검증 결과, 1문 조사 시 조직등가[약 80 HU (Hounsfield Unit)]의 thermoplastic은 동일한 처방 선량 전달 시 약 1,000 HU 이상의 값을 나타내는 putty에 비해 4% 낮은 출력계수(monitor unit) 전달로 약 4.9%의 낮은 표면 선량을 전달하였다. 또한 빔 입사 방향을 기준으로 할 때, 구강 통과 후 경계면의 빔 측면도에서 선량 균일도 평가를 위해 측정한 조사영역 편평도는 air, thermoplastic, putty에서 각각 11.41, 3.98, 4.30으로 나타났다. Thermoplastic 구강 보상체는 조직 등가 물질로 기존에 사용해오던 구강 보상체에 비하여 강도가 높고 물질 변형 확률이 적으며, 구강을 포함을 경계면 및 주변 부위에 균일한 선량 분포를 형성할 수 있으므로 균일한 처방 선량 전달 및 피부 선량 감소가 가능하다.

Keywords

References

  1. Lee SW, Back GM, Yi BY, et al: Preliminary results of a phase I-II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 65:152-160 (2006) https://doi.org/10.1016/j.ijrobp.2005.10.040
  2. An CS, Pei LL, Ji AL, Pei WS, Wei LC, Wei PK: Dosimetric verification of surface and superficial doses for head and neck IMRT with different PTV shrinkage margins. Med Phys 38:1435-1443 (2011) https://doi.org/10.1118/1.3553406
  3. James CC, Amir MO: Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: A Monte Carlo study. Med Dosim 37:195-200 (2012) https://doi.org/10.1016/j.meddos.2011.07.002
  4. Gray A, Oliver LD, Johnston PN: The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps. Med Phys 36:3181-3191 (2009) https://doi.org/10.1118/1.3147204
  5. Van VM, Field C, Raaijmakers CP, et al: Comparing step-andshoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 62:1535-1539 (2005) https://doi.org/10.1016/j.ijrobp.2005.04.011
  6. Jeraj R, Mackie TR, Balog J, et al: Radiation characteristics of helical tomotherapy. Med Phys 31:396-404 (2004) https://doi.org/10.1118/1.1639148
  7. Kan MW, Cheung JY, Leung LH, Lau BM, Yu PK: The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma. Phys Med Biol 56:397-413 (2011) https://doi.org/10.1088/0031-9155/56/2/008
  8. Cho MJ, Choi EK, Chung WK, Kang WS, Park CI: A study on rebuildup of 6MV X-ray by cavity. J Korean Soc Ther Radiol Oncol 7:113-122 (1989)
  9. Kanyz WK, Wu PM, Leung HT, et al: The effect of the nasopharyngeal air cavity on x-ray interface doses. Phys Med Biol 43:529-537 (1998) https://doi.org/10.1088/0031-9155/43/3/005
  10. Shahine BH, Al-Ghazi MSAL, Khatib EE: Experimental evaluation of interface doses in the presence of air cavities compared with treatment planning algorithms. Med Phys 26:350-356 (1999) https://doi.org/10.1118/1.598526
  11. Li XA, Yu C, Holmes T: A systematic evaluation of air cavity dose perturbation in megavoltage x-ray beams. Med Phys 27:1011-1017 (2000) https://doi.org/10.1118/1.598966
  12. Niroomand RA, Razavi R, Thobejane S, Harter KW: Radiation dose perturbation at tissue-titanium dental interfaces in head and neck cancer patients. Int J Radiat Oncol Biol Phys 34:475-480 (1996) https://doi.org/10.1016/0360-3016(95)02095-0
  13. 나경수, 서석진, 이제희, 유숙현: 구강암 환자 치료시 치과용 왁 스[paraffin Wax]의 유용성 평가. 대한방사선치료학회지 23:41- 49 (2011)
  14. 백종걸, 김주호, 이상규, 이원주, 윤종원, 조정희: 두경부암환자의 방사선치료 시 자체 제작한 고정 기구 유용성의 고찰. 대한방사선치료학회지 20:1-9 (2008)
  15. Harshad S, David S, John A, Geoffrey I, Mark O: Investigation of the feasibility of relative 3D dosimetry in the Radiologic Physics Center Head and Neck IMRT phantom using Presage/optical-CT. Med Phys 36:3371-3377 (2009) https://doi.org/10.1118/1.3148534
  16. Qi ZY, Deng XW, Huang SM, et al: In vivo verification of superficial dose for head and neck treatments using intensity- modulated techniques. Med Phys 36:59-70 (2009) https://doi.org/10.1118/1.3030951
  17. Kinhikar RA, Murthy V, Goel V, Tambe CM, Dhote DS, Deshpande DD: Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot 67:1683-1685 (2009) https://doi.org/10.1016/j.apradiso.2009.03.008
  18. Roland TF, Stathakis S, Ramer R, Papanikolaou N: Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems. Appl Radiat Isot 66:1844-1849 (2008) https://doi.org/10.1016/j.apradiso.2008.05.003
  19. Higgins PD, Han EY, Yuan JL, Hui S, Lee CK: Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 52:1135-1146 (2007) https://doi.org/10.1088/0031-9155/52/4/018
  20. 신상훈, 이성현, 손기흥 등: 유리선량계를 이용한 Biobeam8000 감마선 조사장치의 선량평가. 의학물리 22:198-205 (2011)
  21. 고영은, 박성호, 최병준, 김희선, 노영주: 유리 선량계와 다이오드 측정기를 이용한 유방암 환자의 체표면 선량측정 비교. 의학물리 19:9-13 (2008)
  22. 라정은, 서원섭, 신동오, 김희선, 서태석: 유리선량계를 이용한 감마나이프의 출력인자 결정. 의학물리 18:13-19 (2007)