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Abstract 
 

The optimal price strategy selection of two bounded rational cognitive mobile virtual network 

operators (MVNOs) in a duopoly spectrum sharing market is investigated. The bounded 

rational operators dynamically compete to sell the leased spectrum to secondary users in order 

to maximize their profits. Meanwhile, the secondary users’ heterogeneous preferences to rate 

and price are taken into consideration. The evolutionary game theory (EGT) is employed to 

model the dynamic price strategy selection of the MVNOs taking into account the response of 

the secondary users. The behavior dynamics and the evolutionary stable strategy (ESS) of the 

operators are derived via replicated dynamics. Furthermore, a reward and punishment 

mechanism is developed to optimize the performance of the operators. Numerical results show 

that the proposed evolutionary algorithm is convergent to the ESS, and the incentive 

mechanism increases the profits of the operators. It may provide some insight about the 

optimal price strategy selection for MVNOs in the next generation cognitive wireless 

networks. 
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1. Introduction 

Currently, dynamic spectrum sharing among primary and secondary users has been drawn 

great attention due to its potential to improve spectrum efficiency [1][2][3]. Game theory, as 

one way to optimize and improve the efficiency of dynamic spectrum sharing, is widely used 

to model and analyze interactive decision-making processes among multiple users [4][5]. A 

non-cooperative game is employed to solve the problem of dynamic spectrum sharing with 

multiple strategic primary and secondary users [4], while a cooperative game was proposed to 

model the distributed spectrum access for unlicensed spectrum sharing [5]. 

Most existing works using classical game theory mainly rely on the assumption that: (a) the 

users are completed rational and always following their optimal strategy, (b) have common 

knowledge of rationality, and (c) fully aware of the game they are playing. Nevertheless, these 

assumptions may not feasible for all the users in the real cognitive radio network. Not all the 

users are rational and have the ability to judge correctly and predict perfectly. In fact, the users 

belong to the bounded rational population. Additionally, the problem becomes even more 

complicated if the game involves a dynamic process. Therefore, the employment of 

evolutionary game theory (EGT) is developed, which provides a good means to address the 

strategic uncertainty that a player faces, reveal the underlying dynamics and find a robust 

equilibrium strategy [6]. Moreover, it can give a better answer to the selection of multiple 

equilibria and better tackle the unpredictable behavior of players. 

Recently, EGT has been used to many facts. Such as, EGT is employed to model the 

distributed cooperative sensing over cognitive radio networks [7] and investigate the dynamic 

network selection [8]. In addition, EGT is also carried out to investigate the new robust 

equilibrium concepts and describe the dynamics of competition in networking [9], and analyze 

the dynamics of access strategy in cognitive radio ad hoc network [10]. 

In this paper, a dynamic spectrum sharing among two bounded rational MVNOs and 

multiple secondary users is investigated. The MVNO provides mobile phone services but does 

not have its own licensed frequency allocation of radio spectrum, nor does it necessarily have 

all of the infrastructures required to provide mobile telephone service [11]. As intermediaries 

between the spectrum owner and the secondary users, MVNOs can raise the competition level 

of the wireless markets through providing competitive pricing plans as well as more flexible 

services [12]. We consider the case that the two MVNOs lease the temporarily unused wireless 

spectrum and then dynamically compete via price strategy to serve the potential secondary 

users. The response of the secondary users is modeled through an acceptance probability 

which reflects its willingness to buy the offered service with the rate and the asked price. The 

EGT is proposed to investigate the price strategy selection for MVNOs with a dynamic 

viewpoint, where the quality and service (QoS) of the secondary users are taken into account. 

Via replicated dynamics, the strategy equilibria of the operators are derived. Then the stability 

of the proposed algorithm is analyzed based on the concept of evolutionary stable strategy 

(ESS). Furthermore, in order to maintain the collusion of the MVNOs, a reward and 

punishment mechanism is introduced into the proposed evolutionary algorithm. The 

computational results show that the proposed evolutionary algorithm is convergent to ESS, 

and evidence the feasibility of the proposed incentive-mechanized EGT algorithm in 

optimizing the total profits of the MVNOs. 

The rest of this paper is organized as follows. The background on EGT is briefly reviewed 

in Section 2. Section 3 presents a description of the system model. Price based evolutionary 
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game and strategy analysis are shown in Section 4. Collusion based on reward and punishment 

mechanism is introduced in Section 5. Section 6 presents and discusses the numerical results 

from simulations. Finally, conclusions are drawn in Section 7. 

2. Background on Evolutionary Game Theory  

EGT originated as an application of game theory to biological evolving populations of life 

forms. There are two approaches to EGT. The first approach derives from the work of 

Maynard Smith and Price, and employs the concept of ESS as the principal tool of analysis. 

[6][13]. A strategy is called an ESS if, whenever all members of the population adopt it, no 

dissident strategy could invade the population under the influence of natural selection [14][15]. 

Let us denote ),( qpu  as the payoff of a player using strategy p  against another player using 

strategy q . Then, the formal definition of an ESS can be defined as following [16].  

Definition 1: A strategy q  is an ESS if and only if, for all qp  , there exists some 0y , 

such that  

 

))1(,())1(,( qppUqpqU                                                  (1) 

 

holds for all ),0( y   

The second approach of EGT constructs an explicit model of the process by which the 

frequency of strategies changes in the population and studies properties of the evolutionary 

dynamics within that model [13]. Replicator dynamics is one of the most studied dynamics in 

EGT [17][18]. It describes evolutions of the distribution of strategies in the population itself. 

Replicated dynamic equation is expressed as following [19]: 

 

isii xxUxsux
i

)](),([                                                        (2) 

 

where   denotes the factor that affects the evolution speed. ix  is the population share of 

players that select pure strategy is  at time t . ),(
isi xsu   represents the average payoff of the 

individuals that choose strategy is , 
isx is the set of population share who use pure strategies 

other than is , and )(xU is the average payoff of the entire population. The intuition behind (2) 

is as follows: if strategy is  results in a higher payoff than the average level, the percentage 

using is  will grow, and the growth rate ii xtx /)(  can be viewed as the difference between the 

fitness ),(
isi xsu  of is  and the average payoff )(xU  of the population. 

3. System Model 

3.1 Network Model  

A duopoly wireless system with two cognitive MVNOs, operator 1 and operator 2 is 

considered. Both operators lease spectrum from the same spectrum owner, and participate in 

price competition to attract the secondary users which equipped with software defined radios 

within a specified region as shown in Fig. 1. The MVNOs are non-cooperative and both aim to 
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maximize their own profits. The secondary users are assumed to be able to switch between the 

two operators freely. 
 

 
Fig. 1. System model of the MVNOs  

3.2 Model for Secondary Users  

3.2.1 Utility Function 
It is important to take the secondary users heterogeneous preference over the rates R  that 

provided by the operators into account. In general, the utilities of secondary users are assumed 

to satisfy following properties [20]: 
 

lRu
dR

Rdu
R




)(lim  ,0
)(

                                                       (3) 

 

The utility function should be an increasing function of R . Meanwhile, once an already 

high grade of users’ satisfaction has been obtained, the utility will not increase. Consequently, 

the utility function of secondary user is defined as follows [21]: 
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                                                              (4) 

 

where R  is the rate that the operators offered. K  and m  ( 2 ) are positive constants that 

determine the exact shape of the above utility function. 

3.2.2 Acceptance Probability 
Moreover, an acceptance probability ),( puA  is introduced, where u is the utility function of 

the secondary user and p  is the price that the MVNOs announced. The acceptance probability 

should have the following properties that it increases as the utility increasing and the price 

decreasing [20]: 
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In more detail, the properties of the acceptance probability can be expressed 

mathematically: 
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Therefore, the acceptance probability of the secondary users is defined as [20]: 
 

  upeA                                                            (7) 
 

where   is the price sensitivity of the secondary user,   represents the utility sensitivity of 

the secondary user, and   is an appropriate constant. 

Since u is a function of R , A  is a function of R  and p . The acceptance probability as a 

function of offered rate R and price p  is shown in Fig. 2. The parameters are assumed to be:  

05.0 , 2 , 1 , m=2, and 6103K . As expected, the acceptance probability 

decreases as price increases for fixed R . Moreover, with R  increasing to some extend, the 

acceptance probability no longer increases. 
 

 
Fig. 2. Acceptance probability of secondary users 

4. Price Based Evolutionary Game and Strategy Analysis 

4.1 Payoff Matrix for MVNOs 

During the process of spectrum sharing, each of the MVNOs has two possible price strategies: 

either select high price strategy  ihp  or low price strategy ilp , ( 2,1i ). If both operators select 
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high price strategy ihp , they will gain the profit   ihiih ACp
N


2

. Otherwise, the operators will 

obtain   iliil ACp
N


2

 if they both choose low price strategy ilp .   iliil ACpN   is the profit of 

the operators given that the operator takes low price strategy, while the other selects high price 

strategy. Zero is the payoff obtained while the operator takes high price encounters the other 

chooses low price strategy. The interaction can be expressed by a 2×2 matrix and shown in 

Table 1. 
 

Table 1. Payoff matrix for MVNOs 

              Operator 2 

Operator 1 hp2  lp2  

hp1    hh ACp
N

111
2

 ,   hh ACp
N

222
2

  0,   ll ACpN 222   

lp1    ll ACpN 111  , 0   ll ACp
N

111
2

 ,   ll ACp
N

222
2

  

 

where ihA  is the acceptance probability with respect to higher price, and ilA  with respect to 

lower price. iC  is the fixed cost incurred by the MVNOs, 2 ,1i  represents operator 1 and 

operator 2, respectively. N  is the number of secondary users. 

4.2. Solution of Evolutionary Stable Equilibrium 

For an operator, a pure strategy is either to select high price strategy or to take low price 

strategy. A mixed strategy is a probabilistic combination of two strategies in which the 

operator might play one strategy with a probability x and play another with a probability x1 . 

Let the probability of operator i that select high price strategy ihp  is )10(  ii xx , so the 

proportion of choosing low price strategy ilp  is ix1 . Using the evolutionary game model, the 

expected payoff of operator 1 selecting high price strategy is given: 
 

     hhhh ACpx
N

upu 111211
2

)(                                                     (8) 

 

and the expected payoff of selecting low price strategy can be expressed as following: 
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Thus, the average payoff can be written as: 
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The growth rate dtdx /  can be presented as the difference between the payoff of selecting 

high price strategy and the average expectation utility of the two different strategies. 

Consequently, using the replicated dynamic equation, the changing rate of bounded rational 

operator 1 that select high price hp1  can be expressed as follows: 
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                             (11) 

 

where i  is some positive constant that can be used to tune the rate of convergence. 

Analogously, expected payoff and the replicator dynamics equation of operator 2 are 

written as following respectively: 
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According to the replicator dynamics, an equilibrium is a point ]10[]10[),( 21 xx  such 

that 021  xx  . Then from (11) and (13) we get five equilibria: (0, 0), (0, 1), (1, 0), (1, 1), and 

the mixed strategy equilibrium 
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equilibrium (0, 0) and (1, 1) imply that the strategies profiles of operators converge to low 

price strategy   ll pp 21 ,  and high price strategy  hh pp 21 ,  , respectively. Similarly, (0, 1) and 

(1, 0) means the strategy profile will converge to  hl pp 21 ,  and  lh pp 21 , that one operator 

selects high price strategy while the other adopts low price strategy. Moreover,  
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222 ,  signifies that the operators would 

select different strategies corresponding to a certain proportion which leads to a mixed 

strategy equilibrium. 

4.3. Stability of the Algorithm 

In terms of [22], when an equilibrium of the replicator dynamics equations that equals to the 

locally asymptotically stable point is an evolutionary equilibrium in dynamic systems, it is an 

ESS. Accordingly, whether the five equilibriums are ESSs could be judged via investigating 

Jacobian Matrix. The Jacobian Matrix of the system can be obtained as follows: 
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where 
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The local stability of the algorithm is determined by both the determinant and the trace. If 

the equilibria fit det (J) > 0 and tr (J) < 0, they are asymptotically stable, in other words, they 

are ESSs of the game [23]. 

For X=(0, 0), the Jacobian Matrix is:  
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                                    (16) 

The determinant of the Jacobian matrix is 
 

        0
4
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             (17) 

 

The trace of the Jacobian matrix is 
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                           (18) 

 

Therefore, the equilibrium )0,0(  is ESS.  

Similarly, the equilibrium )1,1(  is also ESS, while the equilibria )0,1(  and )1,0( are 

unstable points. In addition, the mixed strategy equilibrium point  
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222 ,  is a saddle point.  

4.4. Optimal Price Strategy of MVNOs 

Based on the evolutionary game algorithm formulation above, the optimal price strategic 

selection algorithm of the bounded rational MVNOs are described as following:  
 

1: Initialization: 
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2:    set the strategy adaptation factor 10   . 

3:    the MVNOs randomly select strategy hp  or strategy lp . 

4: End Initialization 

 

5: Evolution Phase: the operators’ strategy   

6: loop for each time slot t 
7:     compete to serve the secondary users of the decision period 

8:     compute ihu , ilu  and iU  

9:         if iih Uu   then 

10:           if ()/)( randUUu iiih   then 

11:              select low price strategy   

                 else select the original price strategy hp  

12:           end if 
13:         end if 
14:   updating the strategies of the MVNOs 

15: end loop 

5. Collusion Based on Reward and Punishment Mechanism 

As shown in Table 1, it can be observed that there are two pure Nash equilibria, given by 
),( 21 ll pp  and ),( 21 hh pp  in this matrix game. 

Proposition 1. If     






 
222

/1//405.00 KRKRCCp iiiii  ( 2,1i ), Nash equilibrium  

),( 21 hh pp  will achieve a higher profit for the operators. 

Proof: Assume that  
 

 ACpp )(                                                           (19) 

 

Substituting (7) into (19), we get  
 

     22 //1105.0exp)( KRpCpp                                        (20) 

 

Differentiating )( p  with respect to p: 
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//1105.0exp//111.01 KRpCpKRp
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                     (21) 

 

If     






 
222 /1//405.00 KRKRCCp ,   01/10 222  RRpCp , namely,  

    0//111.01
2

 CpKRp . Meanwhile, since     0//1105.0exp
22  KRp , accordingly,  

0
)(






p

p
 which indicates that )( p  increases when p  increases. 

As a result, if ilih pp  , ilih   .     

Thus, ),( 21 hh pp  is the optimal strategy for the operators.                                                           ■ 
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Obviously, a better strategy is ),( 21 hh pp  if     






 
222 /1//405.00 KRKRCCp . 

That is to say, if one of the two operators chooses high price strategy, it is optimal for the other 

to choose high price strategy too. However, due to the selfishness, the other operator may 

select low price strategy in order to maximize its own profit. As a result, introducing a reward 

and punishment mechanism into this game to maintain the collusion is necessary. The operator 

chooses high price strategy will obtain a reward. Otherwise the operator will take a 

punishment for selecting low price strategy. When such mechanism is used, both of the 

operators are inclined to choose optimal Nash equilibrium from which none of the operators 

wants to deviate. Accordingly, the payoff matrix of spectrum sharing with a reward and 

punishment mechanism is shown as following: 
 

Table 2. Payoff matrix for MVNOs with collusion 

 

where )(1 t  is the reward parameter, and the equation )1/(1)( tet   is assumed.   is the 

punishment factor. 

Calculation method is the same as the previous section that without reward and punishment 

mechanism. Consequently, the expectation profit of selecting high price strategy and low price 

strategy for operator 1 can be calculated respectively as follows: 
 

       hhhh ACptx
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The average profit can be written as:  
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The replicated dynamic equation of operator 1 can be represented as follows: 
 

Operator2  

Operator 1 hp2  lp2  

hp1  
     hh ACp

N
t 111

2
1  , 

     hh ACp
N

t 222
2

1   

0,  

   ll ACpN 222  

lp1  
   ll ACpN 111 ,  

0 

   ll ACp
N
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2
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   ll ACp
N

222
2
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Similarly the replicator dynamics equation of operator 2 is written as: 
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Let 021  xx  . The five equilibria: )0,1(),0,1(),1,0(),0,0(  and the mixed strategy equilibrium  
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 can be deduced. 

6. Simulation Results 

In this section, a dynamic spectrum sharing cognitive radio system among two bounded 

rational operators and multiple secondary users are considered. The parameters used in the 

simulation are as follows. The constants of the acceptance probability are  05.0 , 2 , 

1 . And the parameter of the utility function is 2m , 6103K . The fixed costs for 

operator 1 and operator 2 are 1.01 C , 05.02 C  respectively. The rate of operator 1 is 

15Mbps, and the rate of operator 2 is 5Mbps. The positive constant 1  and 2  are both 

assumed to be 0.3. Without loss of generality, the high price and the low price for operator 1 

are assumed to be 31 hp  and 11 lp  respectively. For operator 2, the high price and the low 

price are assumed to be 4.22 hp  and 8.02 lp  respectively. The number of the secondary 

users is 20N . 
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Fig. 3 (a) 1x                                                              Fig. 3 (b) 2x  

Fig. 3. Strategy dynamics of operators 
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Fig. 3 shows the convergence of the proposed evolutionary game with different initial 

strategy selection probabilities  )0(),0( 21 xx  for operator 1 and operator 2, respectively. It is 

observed that the recommended evolutionary algorithm is convergent, and the initial strategy 

selection probability of the operators is an important factor that influences the game results. If  

0.8250)0(1 x , 0.8884)0(2 x , the strategy selection probability  21, xx  will evolve to the 

equilibrium (1, 1) that is the ESS. It means that with iteration both of the operators prefer to 

select higher price strategy finally. Otherwise, the initial state will evolve to the equilibrium (0, 

0), which indicates that the low price strategy is the ESS. As the ESS is achieved, no operator 

will deviate from their current strategies. 
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Fig. 4. Strategy selection probability trajectories for the operators 

 

The evolution of strategy adaptation for the operators via using the phase plane of replicator 

dynamics is displayed in Fig. 4. The initial states  )0(),0( 21 xx  of the strategy selection 

probability are randomly selected. With average profit information, the operator can adapt its 

price strategy selection to reach the evolutionary equilibrium. In particular, if the current profit 

of the operator is lower than the average profit of different strategies, the operator may deviate 

from the current strategy to obtain a better performance. It is observed that the direction of 

adaptation in the strategy selection for the operators is similar to the convergence of the 

proposed game with different initial strategy selection probabilities shown in Fig. 3. Most of 

the strategy selection probabilities evolve to the evolutionary equilibrium    0 ,0, 21  xx , and 

a few reach to the evolutionary equilibrium    1 ,1, 21  xx . 

Profits of different strategies for operator 1 and operator 2 are shown in Fig. 5 and Fig. 6 

respectively. In Fig. 5 it is observed that with the strategy selection probability  21, xx  

evolving to the evolutionary equilibrium (0, 0), the profit of selecting low price strategy lp1  is 

8.544 which equals to the average profit of the two different strategies for operator 1, and the 

profit of selecting high price strategy hp1  evolves to zero ultimately. On the reverse, if both of 

the operators adopt high price strategy ultimately, the profit of choosing high price strategy 

hp1  is 18.161 which equals to the average profit, and the profit of choosing low price strategy 
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Fig. 5. Profit of operator 1 
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Fig. 6. Profit of operator 2 

 

is 17.088 that is higher than the former case. These results indicate that the evolutionary 

equilibrium (1, 1) is superior to the evolutionary equilibrium (0, 0). In other words, with 

iterations if both of the operators adopt high price strategy ultimately, they would obtain the 

highest profits. Similar phenomenon can be found in profit evolution of operator 2, as shown 

in Fig. 6. 

Fig. 7 shows the impact of the parameter   on the dynamics of strategy adaption with 

initial strategy state X (0.5, 0.8). We observe that the parameter   doesn’t change the 

convergence trend but have an influence on the rate of the strategy adaption. With   

decreasing, the iterative convergence speed will become slower. 
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In the following simulation, the reward and punishment mechanism is introduced into the 

proposed evolutionary algorithm of the dynamic spectrum sharing. For the sake of analysis, 

the punishment factor 1  is assumed. Fig. 8 (a) and (b) show the convergence of the 

proposed game with different initial selection probabilities for operator 1 and operator 2 with 

collusion respectively. Comparing the results shown in Fig. 3 and Fig. 8, Fig. 4 and Fig. 9, it 

can be found that more strategy selection probabilities evolve to the evolutionary equilibrium 

(1, 1) with iteration for both operators in Fig. 8 and Fig. 9. It suggests that the operators are 

more willing to choose high price strategy finally with different initial strategy selection 

probabilities. This is because that if the operator chooses high price strategy, it gets a reward, 

on the contrary the operator obtains a punishment. As a result, both of the operators are 

inclined to adopt  high price strategy, which is the optimal choice to maximize their profits. In 

addition, the convergence process becomes quicker with collusion. 
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Fig. 8. Strategy dynamics of operators with collusion 
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The evolution of strategy adaptation with collusion for the operators by using the phase 

plane of replicator dynamics is shown in Fig. 9. The initial states  )0(),0( 21 xx  of the strategy 

selection probability are also randomly selected. Comparing the results displayed in Fig. 4 and 

Fig. 9, it is clearly that in Fig. 9 the algorithm with collusion changes the convergence trend. 
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Fig. 9. Strategy selection probability trajectories for the operators with collusion 
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Fig. 10. Profit of operator 1 with collusion 

 

Fig. 10 shows the profit of the algorithm with reward and punishment mechanism for operator 

1. It can be found that the variation is similar as the algorithm that without collusion. However, 

as expected the evolutionary game algorithm with incentive mechanism achieves higher 

profits for the operator no matter the strategy selection probability evolves to the evolutionary 

equilibrium (0, 0) or (1, 1). This is attributed to that when the incentive mechanism is used, 

both of the operators are aware of the reward and the punishment. Collusion between the 

operators can be maintained to select the optimal price strategy so that the highest profit will 
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be obtained in the long run. As a result, the reward and punishment is an effective method to 

promote the profits of the operators. 
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The effect of punishment factor   on the price strategy selection probability 1x  is shown in 

Fig. 11. As the punishment factor increases to some extent for the same initial price strategy 

selection probability, the operator would choose high price strategy ultimately with iteration. 

In other words, the higher the punishment factor becomes, the operator is more incline to 

select high price strategy. In addition, with the same initial strategy selection probability )0(1x ,  

the convergence time is shorter as    increases. 
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Fig. 12. Average profit of operators for EGT with and without coalition as well as classical game 

algorithm 

 

As shown in Fig. 12, we compare the average profit of the operators based on the proposed 

EGT algorithm with and without coalition as well as the classical game algorithm. The 
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different initial strategy selection probability of the operators X1=(0.2, 0.2), X2=(0.2, 0.9) and 

X3=(0.9, 0.9) are selected for the proposed EGT algorithm. C1 and C2 denote the classical 

game algorithm of operator 1 and 2, respectively. It is clearly that, increasing the initial 

strategy selection probability, the operators obtain higher average profits with coalition than 

the other algorithms. It indicates that the proposed reward and punishment mechanism EGT 

algorithm has a better performance. This is because with coalition, both the operators are 

inclined to choose high price strategy ultimately, which will leads to higher profits. The 

computational results evidence the feasibility of the proposed algorithm in optimizing the total 

profits of operators in spectrum sharing to some extent. 

7. Conclusion 

In this paper, the demand responsive pricing competition between two bounded rational 

MVNOs in a duopoly spectrum market is investigated. The optimal price strategy selection 

that takes into account both the profits of operators and QoS requirement of the secondary 

users is modeled. EGT is employed to model the dynamic price strategy selection for MVNOs. 

Using replicator dynamics, the operators are able to try two different price strategies and learn 

a better strategy via strategic interactions. The ESSs are characterized and studied with the 

proposed game. In addition, the operators can benefit from collusion with increased average 

profit when collusion is maintained between them via reward and punishment mechanism. 

Simulation results reveal that the proposed game could make the operators adjust their 

strategies to achieve ESS using replicated dynamics. The initial strategy selections of 

operators play an important role in affecting the ESSs. Moreover, the dynamic spectrum 

sharing algorithm with reward and punishment mechanism has a better performance than that 

without such mechanism. Such results may give some insight about the optimal price strategy 

selection for MVNOs in the next generation cognitive wireless networks. 
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